PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

Use of UIOT for offshore surveys through autonomous vehicles

Treść / Zawartość
Identyfikatory
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
The ENDURUNS project is a European Research project of the Horizon 2020 framework, which has as its main objective to achieve the optimum and intelligent use of green hydrogen energy for long-term ocean surveys. The ENDURUNS system comprises an Unmanned Surface Vehicle (USV) and an Autonomous Underwater Vehicle (AUV) with gliding capability. The power pack of the USV integrates Li-ion batteries with photovoltaic panels, whilst the AUV employs Li-ion batteries and a hydrogen fuel cell. It is essential to develop a continuous monitoring ca-pability for the different systems of the vehicles. Data transmission between the devices onboard presents challenges due to the volume and structure of the different datasets. A telecommunications network has been designed to manage the operational components considered in the project. The autonomous vehicles perform measurements, providing their position and other data wirelessly. The system will generate a great volume of various signals during the survey. The Remote Control Centre needs to be interfaced with the vehicles in order to receive, manage and store the acquired data. An Underwater Internet of Things (IoT) platform is designed to establish efficient and smart data management. This study presents an exhaustive survey to analyse the telecommunication systems employed in the autonomous vehicles, including the back-end, user interface and mobile units. This paper presents the novel design of the hardware and software structure of the ENDURUNS project with regard to the literature, where its components and their in-terconnection layers are detailed, which is a novel scientific and technological approach for autonomous seabed surveying in deep oceans or in coastal areas.
Rocznik
Tom
Strony
175--189
Opis fizyczny
Bibliogr. 118 poz., rys., tab.
Twórcy
  • University of Castilla-La Mancha ETII Campus Universitario sn 13004 Ciudad Real Spain
  • University of Castilla-La Mancha ETSI Campus Universitario s/n 13071 Ciudad Real Spain
  • Space Applications Services NV/SA Sint-Stevens-Woluwe, Brussels Area Sint-Stevens-Woluwe, 56987 Brussels Belgium
  • Space Applications Services NV/SA Sint-Stevens-Woluwe, Brussels Area Sint-Stevens-Woluwe, 56987 Brussels Belgium
  • Space Applications Services NV/SA Sint-Stevens-Woluwe, Brussels Area Sint-Stevens-Woluwe, 56987 Brussels Belgium
  • Institute of Marine Sciences National Research Council of Italy (CNR) 789965 La Spezia Italy
  • University of Birmingham Edbaston, 5698745 Birmingham United Kingdom
  • School of Metallurgy and Materials The University of Birmingham, Edgbaston, Birmingham, UK, Edbaston, 5698745 Birmingham, United Kingdom
Bibliografia
  • 1. R. Goonesekere and Y. Guo, “Unmanned Underwater Drone Design for Ocean Exploration,” in ASME 2018 International Mechanical Engineering Congress and Exposition, 2018.
  • 2. L. Mayer, M. Jakobsson, G. Allen, B. Dorschel, R. Falconer, V. Ferrini, et al., “The Nippon Foundation—GEBCO seabed 2030 project: The quest to see the world’s oceans completely mapped by 2030,” Geosciences, vol. 8, p. 63, 2018.
  • 3. S. Marini, N. Gjeci, S. Govindaraj, A. But, B. Sportich, E. Ottaviani, et al., “ENDURUNS: An Integrated and Flexible Approach for Seabed Survey Through Autonomous Mobile Vehicles,” Journal of Marine Science and Engineering, vol. 8, p. 633, 2020.
  • 4. R. Veugelers, M. Cincera, R. Frietsch, C. Rammer, T. Schubert, A. Pelle, et al., “The impact of horizon 2020 on innovation in Europe,” Intereconomics, vol. 50, pp. 4-30, 2015.
  • 5. I. Segovia, A. Pliego, M. Papaelias, and F. P. G. Márquez, “Optimal Management of Marine Inspection with Autonomous Underwater Vehicles,” in International Conference on Management Science and Engineering Management, 2019, pp. 760-771.
  • 6. R. Danovaro, J. Aguzzi, E. Fanelli, D. Billett, K. Gjerde, A. Jamieson, et al., “An ecosystem-based deep-ocean strategy,” Science, vol. 355, pp. 452-454, 2017.
  • 7. S. Sokolov, A. Zhilenkov, A. Nyrkov, and S. Chernyi, “The use robotics for underwater research complex objects,” in Computational intelligence in data mining, ed: Springer, 2017, pp. 421-427.
  • 8. R. Danovaro, C. Corinaldesi, A. Dell’Anno, and P. V. Snelgrove, “The deep-sea under global change,” Current Biology, vol. 27, pp. R461-R465, 2017.
  • 9. A. Aguzzi, “’Broken access’ publishing corrodes quality,” Nature, vol. 570, pp. 139-140, 2019.
  • 10. J. Aguzzi, D. Chatzievangelou, S. Marini, E. Fanelli, R. Danovaro, S. Flögel, et al., “New high-tech flexible networks for the monitoring of deep-sea ecosystems,” Environmental science & technology, vol. 53, pp. 6616-6631, 2019.
  • 11. M. Rovere, A. Mercorella, E. Frapiccini, V. Funari, F. Spagnoli, C. Pellegrini, et al., “Geochemical and geophysical monitoring of hydrocarbon seepage in the Adriatic Sea,” Sensors, vol. 20, p. 1504, 2020.
  • 12. U. Neettiyath, B. Thornton, M. Sangekar, Y. Nishida, K. Ishii, A. Bodenmann, et al., “Deep-Sea Robotic Survey and Data Processing Methods for Regional-Scale Estimation of Manganese Crust Distribution,” IEEE Journal of Oceanic Engineering, vol. 46, pp. 102-114, 2020.
  • 13. M. Esposito, M. Martinez-Cabanas, D. P. Connelly, D. Jasinski, P. Linke, M. Schmidt, et al., “Water column baseline assessment for offshore Carbon Dioxide Capture and Storage (CCS) sites: Analysis of field data from the Goldeneye storage complex area,” International Journal of Greenhouse Gas Control, vol. 109, p. 103344, 2021.
  • 14. GEBCO, “General Bathymetric Chart of Oceans,” Available online: https://www.gebco.net/ (accessed on June 2021). 2021.
  • 15. IHO, “International Hydrographic Organization.,” Available online: https://iho.int/ (Accessed on June 2021), 2021.
  • 16. IOC, “Intergovernmental Oceanographic Commission.,” Available online: http://www.ioc-unesco.org/ (Accessed June 2021), 2021.
  • 17. R. B. Wynn, V. A. Huvenne, T. P. Le Bas, B. J. Murton, D. P. Connelly, B. J. Bett, et al., “Autonomous Underwater Vehicles (AUVs): Their past, present and future contributions to the advancement of marine geoscience,” Marine Geology, vol. 352, pp. 451-468, 2014.
  • 18. W. Shi, J. Cao, Q. Zhang, Y. Li, and L. Xu, “Edge computing: Vision and challenges,” IEEE internet of things journal, vol. 3, pp. 637-646, 2016.
  • 19. M. Jahanbakht, W. Xiang, L. Hanzo, and M. R. Azghadi, “Internet of underwater Things and big marine data analytics—A comprehensive survey,” IEEE Communications Surveys & Tutorials, 2021.
  • 20. B. Shi, Y. Su, D. Zhang, C. Wang, and M. S. AbouOmar, “Research on Trajectory Reconstruction Method Using Automatic Identification System Data for Unmanned Surface Vessel,” IEEE Access, vol. 7, pp. 170374-170384, 2019.
  • 21. R. Al-Zaidi, J. Woods, M. Al-Khalidi, and H. Hu, “An iotenabled system for marine data acquisition and cartography,” Transactions on networks and Communications, vol. 5, 2017.
  • 22. R. Al-Zaidi, J. C. Woods, M. Al-Khalidi, and H. Hu, “Building Novel VHF-Based Wireless Sensor Networks for the Internet of Marine Things,” IEEE Sensors Journal, vol. 18, pp. 2131- 2144, 2018.
  • 23. R. M. Alkan, M. H. Saka, İ. M. Ozulu, and V. İlçi, “Kinematic precise point positioning using GPS and GLONASS measurements in marine environments,” Measurement, vol. 109, pp. 36-43, 2017.
  • 24. T. Liu, Y. Yuan, B. Zhang, N. Wang, B. Tan, and Y. Chen, “Multi-GNSS precise point positioning (MGPPP) using raw observations,” Journal of geodesy, vol. 91, pp. 253-268, 2017.
  • 25. J. Tegedor, O. Ørpen, T. Melgård, D. Łapucha, and H. Visser, “G4 Multi-constellation Precise Point Positioning service for high accuracy offshore navigation,” TransNav: International Journal on Marine Navigation and Safety of Sea Transportation, vol. 11, 2017.
  • 26. N. Goyal, M. Dave, and A. K. Verma, “Protocol stack of underwater wireless sensor network: classical approaches and new trends,” Wireless Personal Communications, vol. 104, pp. 995-1022, 2019.
  • 27. A. Song, M. Stojanovic, and M. Chitre, “Editorial underwater acoustic communications: Where we stand and what is next?,” IEEE Journal of Oceanic Engineering, vol. 44, pp. 1-6, 2019.
  • 28. K. F. Haque, K. H. Kabir, and A. Abdelgawad, “Advancement of Routing Protocols and Applications of Underwater Wireless Sensor Network (UWSN)—A Survey,” Journal of Sensor and Actuator Networks, vol. 9, p. 19, 2020.
  • 29. N. Zhang, “Architecture Research and Design of the IoT Middleware for Marine Logistics,” Journal of Coastal Research, vol. 94, pp. 196-199, 2019.
  • 30. F. P. G. Márquez, I. P. G. Pardo, and M. R. M. Nieto, “Competitiveness based on logistic management: a real case study,” Annals of Operations Research, vol. 233, pp. 157-169, 2015.
  • 31. M.-H. Jeon, Y.-J. Jo, S.-H. Kim, and C.-H. Oh, “Design of GPS based LPWA module for marine IoT applications,” presented at the INTERNATIONAL CONFERENCE ON FUTURE INFORMATION & COMMUNICATION ENGINEERING, 2018.
  • 32. J. Aguzzi, D. Chatzievangelou, S. Marini, E. Fanelli, R. Danovaro, S. Flögel, et al., “New High-Tech Flexible Networks for the Monitoring of Deep-Sea Ecosystems,” Environmental Science & Technology, vol. 53, pp. 6616-6631, 2019/06/18 2019.
  • 33. J. Aguzzi, D. Chatzievangelou, M. Francescangeli, S. Marini, F. Bonofiglio, J. del Rio, et al., “The hierarchic treatment of marine ecological information from spatial networks of benthic platforms,” Sensors, vol. 20, p. 1751, 2020.
  • 34. Y. Wu, X. Ta, R. Xiao, Y. Wei, D. An, and D. Li, “Survey of underwater robot positioning navigation,” Applied Ocean Research, vol. 90, p. 101845, 2019.
  • 35. C. A. Medina, M. R. Pérez, and L. C. Trujillo, “IoT Paradigm into the Smart City Vision: A Survey,” in 2017 IEEE International Conference on Internet of Things (iThings) and IEEE Green Computing and Communications (GreenCom) and IEEE Cyber, Physical and Social Computing (CPSCom) and IEEE Smart Data (SmartData), 2017, pp. 695-704.
  • 36. B. Xiao, R. Rahmani, L. Yuhong, D. Gillblad, and T. Kanter, “Intelligent data-intensive IoT: A survey,” in 2016 2nd IEEE International Conference on Computer and Communications (ICCC), 2016, pp. 2362-2368.
  • 37. C. I. Noshi, A. I. Assem, and J. J. Schubert, “The Role of Big Data Analytics in Exploration and Production: A Review of Benefits and Applications,” in SPE International Heavy Oil Conference and Exhibition, 2018.
  • 38. L. Guidi, A. Fernàndez-Guerra, C. Canchaya, E. Curry, F. Foglini, J.-O. Irisson, et al., “Big data in marine science,” Marine Board Future Science Brief, 2020.
  • 39. R. Kumar, S. P. Singh, and K. Lamba, “Sustainable robust layout using Big Data approach: A key towards industry 4.0,” Journal of Cleaner Production, vol. 204, pp. 643-659, 2018/12/10/ 2018.
  • 40. C. Fraunhofer, “Maritime unmanned navigation through intelligence in networks,” Fraunhofer CML: Hamburg, Germany, 2016.
  • 41. P. J. B. Sánchez, M. Papaelias, and F. P. G. Márquez, “Autonomous underwater vehicles: Instrumentation and measurements,” IEEE Instrumentation & Measurement Magazine, vol. 23, pp. 105-114, 2020.
  • 42. Y. Li, T. Ma, R. Wang, P. Chen, and Q. Zhang, “Terrain Correlation Correction Method for AUV Seabed Terrain Mapping,” Journal of Navigation, vol. 70, pp. 1062-1078, 2017.
  • 43. S. Jiang, “Marine internet for internetworking in oceans: A tutorial,” Future Internet, vol. 11, p. 146, 2019.
  • 44. M. J. P. Saiz, “Study and development of a Submarine Optical Communication: TCP Protocol,” 2018.
  • 45. E. D. Wardihani, E. Purbawati, and E. Supriyanto, “Analysis of multi-source effect in underwater communication,” in 2017 IEEE International Conference on Communication, Networks and Satellite (Comnetsat), 2017, pp. 67-73.
  • 46. A. Khoiro, I. Arifin, M. Pratama, and M. F. Adianto, “Design and Development Graphical User Interface on Inertial Navigation System of Submarine,” IPTEK Journal of Proceedings Series, pp. 62-67, 2019.
  • 47. S. S and B. Maram, “Underwater Wireless Sensor Networks,” 2018, vol. 2, p. 3, 2018-01-05 2018.
  • 48. V. Khajuria and M. Kaur, “Underwater Wireless Sensor Network: Architecture, Applications and Challenges,” in 2018 2nd International Conference on Trends in Electronics and Informatics (ICOEI), 2018, pp. 939-944.
  • 49. B. Zerr, L. Jaulin, V. Creuze, N. Debese, I. Quidu, B. Clement, et al., Quantitative Monitoring of the Underwater Environment vol. 6: Springer, 2016.
  • 50. S. Jiang, F. Liu, and S. Jiang, “Distance-alignment based adaptive MAC protocol for underwater acoustic networks,” in 2016 IEEE Wireless Communications and Networking Conference, 2016, pp. 1-6.
  • 51. J. Goh, A. Shaw, and A. Al-Shamma’a, “Underwater wireless communication system,” in Journal of Physics: Conference Series, 2009, p. 012029.
  • 52. G. Mazurek, “Basic channel parameters of ultrasound transmission in air,” in 2018 22nd International Microwave and Radar Conference (MIKON), 2018, pp. 607-609.
  • 53. E. Demirors, D. Unal, G. E. Santagati, and T. Melodia, “High-Data Rate Carrierless Impulsive Communications For Underwater Acoustic Networks,” in Underwater Acoustics Conference and Exhibition, 2019.
  • 54. A. Krivchenkov and A. Skrunds, “Measurements of the Parameters of a Broadband Satellite Data Channel in the SEVSAT Ship System,” Cham, 2019, pp. 440-449.
  • 55. I. I. Lysogor, L. S. Voskov, and S. G. Efremov, “Survey of data exchange formats for heterogeneous LPWAN-satellite IoT networks,” in 2018 Moscow Workshop on Electronic and Networking Technologies (MWENT), 2018, pp. 1-5.
  • 56. S. N. Rao, D. Raj, V. Parthasarathy, S. Aiswarya, M. V. Ramesh, and V. Rangan, “A novel solution for high speed internet over the oceans,” in IEEE INFOCOM 2018 - IEEE Conference on Computer Communications Workshops (INFOCOM WKSHPS), 2018, pp. 906-912.
  • 57. K. Korcz, “19. Yesterday, Today and Tomorrow of the GMDSS,” International Recent Issues about ECDIS, e-Navigation and Safety at Sea: Marine Navigation and Safety of Sea Transportation, p. 149, 2017.
  • 58. B. Bellalta, “IEEE 802.11ax: High-efficiency WLANS,” IEEE Wireless Communications, vol. 23, pp. 38-46, 2016.
  • 59. J. Ge, T. Li, and T. Geng, “The Wireless Communications for Unmanned Surface Vehicle: An Overview,” Cham, 2018, pp. 113-119.
  • 60. J. Kim, S. Koo, and G. Lee, “Comparison of Speed by Type of Wireless LAN,” in Proceedings of the Korean Institute of Information and Commucation Sciences Conference, 2018, pp. 19-20.
  • 61. S. Park, J. Kim, S. Yun, and J. Choi, “SIGNAL TRANSMISSION/RECEPTION METHOD IN WIRELESS LAN SYSTEM, AND DEVICE THEREFOR,” ed: US Patent App. 16/461,351, 2020.
  • 62. K. Korcz, “Maritime radio information systems,” Journal of KONES, vol. 24, 2017.
  • 63. S. Mun, J. Son, W. Jo, and W. Lee, “An implementation of AIS-based ad hoc routing (AAR) protocol for maritime data communication networks,” in 2012 8th International Conference on Natural Computation, 2012, pp. 1007-1010.
  • 64. F. Lázaro, R. Raulefs, W. Wang, F. Clazzer, and S. Plass, “VHF Data Exchange System (VDES): an enabling technology for maritime communications,” CEAS space Journal, vol. 11, pp. 55-63, 2019.
  • 65. I. Recommendation, “2092-0, Technical characteristics for a VHF data exchange system in the VHF maritime mobile band,” International Telecommunication Union, Geneva, 2015.
  • 66. P. H. Putman, “Display Interfacing 2018: Getting Around the UHD Speed Bump,” SMPTE Motion Imaging Journal, vol. 127, pp. 51-55, 2018.
  • 67. D. Anderson and J. Trodden, USB 3.0 Technology: MindShare Press, 2013.
  • 68. A. Sadat, M. Campbell, H. Ali, and Z. Lin, “Alternate Mode for USB Type-C™: Going beyond USB,” Texas Instruments, 2016.
  • 69. A. Li, “USB Type-C for Machine Vision,” Quality, pp. 16VS-17VS, 2018.
  • 70. J. C. R. Guerrero, I. B. Mabrouk, M. Alhassan, M. Nedil, and T. Ciamulski, “On the Path Loss Model for 5-GHz Microwave-Based Pinless Subsea Connectors,” Progress In Electromagnetics Research, vol. 82, pp. 147-153, 2019.
  • 71. WiSub. (2018, 13/09/2020). High Performance Pinless Subsea Connector. Available: https://wisub.com/wp-content/ uploads/2018/08/wisub_maelstrom_product_data_sheet_ rD_web.pdf
  • 72. R. A. Atmoko, D. Yang, M. Y. Alfiani, and L. Subiyanto, “Controlling Unmanned Surface Vehicle Using MQTT Protocol,” Journal Of Computer Networks, Architecture and High Performance Computing, vol. 1, pp. 21-28, 2019.
  • 73. A. L. Christensen, S. Oliveira, O. Postolache, M. J. o. De Oliveira, S. Sargento, P. Santana, et al., “Design of Communication and Control for Swarms of Aquatic Surface Drones,” in ICAART (2), 2015, pp. 548-555.
  • 74. G. B. Laleci, G. Aluc, A. Dogac, A. Sinaci, O. Kilic, and F. Tuncer, “A semantic backend for content management systems,” Knowledge-Based Systems, vol. 23, pp. 832-843, 2010/12/01/ 2010.
  • 75. M. Kaluža, M. Kalanj, and B. Vukelić, “A Comparison of Back-end Frameworks for Web Application Development,” Zbornik Veleučilišta u Rijeci, vol. 7, pp. 317-332, 2019.
  • 76. Y. Carreno, È. Pairet, Y. Petillot, and R. P. Petrick, “Task Allocation Strategy for Heterogeneous Robot Teams in Offshore Missions,” in Proceedings of the 19th International Conference on Autonomous Agents and MultiAgent Systems, 2020, pp. 222-230.
  • 77. F. Thompson and D. Guihen, “Review of mission planning for autonomous marine vehicle fleets,” Journal of Field Robotics, vol. 36, pp. 333-354, 2019.
  • 78. Z. Raja Jawwad, M. Chakkol, M. Johnson, and A. Beltagui, “Organizing for servitization: examining front- and back-end design configurations,” International Journal of Operations & Production Management, vol. 38, pp. 249-271, 2018.
  • 79. H. Hastie, X. Liu, and P. Patron, “A demonstration of multimodal debrief generation for AUVs, post-mission and in-mission,” presented at the Proceedings of the 18th ACM International Conference on Multimodal Interaction, Tokyo, Japan, 2016.
  • 80. H. Hastie, X. Liu, Y. Petillot, and P. Patron, “Talking autonomous vehicles: Automatic AUV mission analysis in natural language,” in OCEANS 2017 - Aberdeen, 2017, pp. 1-5.
  • 81. H. Poranen, G. Marafioti, G. Johansen, and E. Sæter, “User Interface Design Guidelines for Marine Autonomous Operations Involving a Large Number of Actors, Devices and Sensors,” in ASME 2018 37th International Conference on Ocean, Offshore and Arctic Engineering, 2018.
  • 82. N. K. Yilmaz, C. Evangelinos, P. F. Lermusiaux, and N. M. Patrikalakis, “Path planning of autonomous underwater vehicles for adaptive sampling using mixed integer linear programming,” IEEE Journal of Oceanic Engineering, vol. 33, pp. 522-537, 2008.
  • 83. K. Zhang, J. Du, J. Wang, C. Jiang, Y. Ren, and A. Benslimane, “Distributed hierarchical information acquisition systems based on auv enabled sensor networks,” in ICC 2019-2019 IEEE International Conference on Communications (ICC), 2019, pp. 1-6.
  • 84. C. Yu, X. Xiang, F. Maurelli, Q. Zhang, R. Zhao, and G. Xu, “Onboard system of hybrid underwater robotic vehicles: Integrated software architecture and control algorithm,” Ocean Engineering, vol. 187, p. 106121, 2019/09/01/ 2019.
  • 85. A. Atyabi, S. MahmoudZadeh, and S. Nefti-Meziani, “Current advancements on autonomous mission planning and management systems: An AUV and UAV perspective,” Annual Reviews in Control, vol. 46, pp. 196-215, 2018/01/01/ 2018.
  • 86. J.-M. Kwak, S.-H. Kim, and S.-R. Lee, “Design of marine IoT wireless network for building fishing gear monitoring system,” The Journal of Advanced Navigation Technology, vol. 22, pp. 76-83, 2018.
  • 87. A. Nordrum, “A language for the internet of underwater things [News],” IEEE Spectrum, vol. 54, pp. 9-10, 2017.
  • 88. C. Petrioli, R. Petroccia, D. Spaccini, A. Vitaletti, T. Arzilli, D. Lamanna, et al., “The SUNRISE GATE: Accessing the SUNRISE federation of facilities to test solutions for the Internet of Underwater Things,” in 2014 Underwater Communications and Networking (UComms), 2014, pp. 1-4.
  • 89. L. S. Dalenogare, G. B. Benitez, N. F. Ayala, and A. G. Frank, “The expected contribution of Industry 4.0 technologies for industrial performance,” International Journal of Production Economics, vol. 204, pp. 383-394, 2018/10/01/ 2018.
  • 90. M. Nitti, R. Girau, L. Atzori, and V. Pilloni, “Trustworthiness management in the IoT: The importance of the feedback,” in 2017 20th Conference on Innovations in Clouds, Internet and Networks (ICIN), 2017, pp. 325-327.
  • 91. C. Costa, E. Fanelli, S. Marini, R. Danovaro, and J. Aguzzi, “Global Deep-Sea Biodiversity Research Trends Highlighted by Science Mapping Approach,” Frontiers in Marine Science, vol. 7, p. 384, 2020.
  • 92. C. M. Harris, Handbook of acoustical measurements and noise control: McGraw-Hill New York, 1991.
  • 93. C. J. Deepu, C.-H. Heng, and Y. Lian, “A hybrid data compression scheme for power reduction in wireless sensors for IoT,” IEEE transactions on biomedical circuits and systems, vol. 11, pp. 245-254, 2016.
  • 94. S.-W. Jo, J. H. Jang, S. Yu, and W. Shim, “A Validation of Field Test Results for LTE-Maritime,” IFAC-PapersOnLine, vol. 51, pp. 153-158, 2018/01/01/ 2018.
  • 95. G. Aloi, G. Caliciuri, G. Fortino, R. Gravina, P. Pace, W. Russo, et al., “A Mobile Multi-Technology Gateway to Enable IoT Interoperability,” in 2016 IEEE First International Conference on Internet-of-Things Design and Implementation (IoTDI), 2016, pp. 259-264.
  • 96. G. Xu, W. Shen, and X. Wang, “Applications of Wireless Sensor Networks in Marine Environment Monitoring: A Survey,” Sensors, vol. 14, pp. 16932-16954, 2014.
  • 97. G. Xu, W. Shen, and X. Wang, “Marine environment monitoring using Wireless Sensor Networks: A systematic review,” in 2014 IEEE International Conference on Systems, Man, and Cybernetics (SMC), 2014, pp. 13-18.
  • 98. M. Dener and C. Bostancıoğlu, “Smart technologies with wireless sensor networks,” Procedia-Social and Behavioral Sciences, vol. 195, pp. 1915-1921, 2015.
  • 99. M. A. Kafi, J. B. Othman, and N. Badache, “A Survey on Reliability Protocols in Wireless Sensor Networks,” ACM Comput. Surv., vol. 50, p. Article 31, 2017.
  • 100. R. Su, D. Zhang, C. Li, Z. Gong, R. Venkatesan, and F. Jiang, “Localization and Data Collection in AUVAided Underwater Sensor Networks: Challenges and Opportunities,” IEEE Network, vol. 33, pp. 86-93, 2019.
  • 101. P. V. Venkateswara Rao, N. Mohan Krishna Varma, and R. Sudhakar, “A Systematic Survey on Software-Defined Networks, Routing Protocols and Security Infrastructure for Underwater Wireless Sensor Networks (UWSNs),” Singapore, 2020, pp. 551-559.
  • 102. P. Tan, H. Wu, P. Li, and H. Xu, “Teaching management system with applications of RFID and IoT technology,” Education Sciences, vol. 8, p. 26, 2018.
  • 103. S. A. Ahson and M. Ilyas, RFID handbook: applications, technology, security, and privacy: CRC press, 2017.
  • 104. G. Kara, “ANALYSIS OF METEOROLOGICAL FACTORS AFFECTING ON MARITIME TRANSPORT SYSTEMS,” PROCEEDINGS BOOK, p. 693, 2016.
  • 105. P. Gupta, J. Batra, J. Sangwan, and A. Khatri, “Marine Monitoring Based on WSN: Application and Challenges,” International Journal of Advanced Studies of Scientific Research, vol. 3, 2018.
  • 106. A. Khasawneh, M. S. B. A. Latiff, O. Kaiwartya, and H. Chizari, “Next Forwarding Node Selection in Underwater Wireless Sensor Networks (UWSNs): Techniques and Challenges,” Information, vol. 8, p. 3, 2017.
  • 107. H. I. Moud, A. Shojaei, and I. Flood, “Current and future applications of unmanned surface, underwater, and ground vehicles in construction,” in Proceedings of the Construction Research Congress, 2018, pp. 106-115.
  • 108. A. E. Pallares-Calvo, B. E. Carvajal-Gámez, and O. O. Gutiérrez-Frías, “Radio beacon for geo-referenced location at sea using mobile devices,” in Emerging Imaging and Sensing Technologies for Security and Defence III; and Unmanned Sensors, Systems, and Countermeasures, 2018, p. 107990X.
  • 109. W. Sun, Z. Wei, B. Hong, and Y. Yang, “A Digital Ocean Cloud Platform Architecture Based on IPv6 Smart Gateway,” in 2019 IEEE 4th International Conference on Cloud Computing and Big Data Analysis (ICCCBDA), 2019, pp. 438-442.
  • 110. Y. Yang, Z. Wei, and B. Hong, “Research on IPv6 Transition Technology for Digital Ocean,” in 2018 IEEE 4th International Conference on Computer and Communications (ICCC), 2018, pp. 317-320.
  • 111. G. Xu, Y. Shi, X. Sun, and W. Shen, “Internet of Things in Marine Environment Monitoring: A Review,” Sensors, vol. 19, p. 1711, 2019.
  • 112. B. Kang and H. Choo, “An experimental study of a reliable IoT gateway,” ICT Express, vol. 4, pp. 130-133, 2018/09/01/ 2018.
  • 113. S. Yoon and J. Kim, “Remote security management server for IoT devices,” in 2017 International Conference on Information and Communication Technology Convergence (ICTC), 2017, pp. 1162-1164.
  • 114. M. Burhan, R. A. Rehman, B. Khan, and B.-S. Kim, “IoT elements, layered architectures and security issues: A comprehensive survey,” Sensors, vol. 18, p. 2796, 2018.
  • 115. Z. Yang, W. Xie, L. Huang, and Z. Wei, “Marine data security based on blockchain technology,” IOP Conference Series: Materials Science and Engineering, vol. 322, p. 052028, 2018/03 2018.
  • 116. A. J. C. Trappey, C. V. Trappey, U. Hareesh Govindarajan, A. C. Chuang, and J. J. Sun, “A review of essential standards and patent landscapes for the Internet of Things: A key enabler for Industry 4.0,” Advanced Engineering Informatics, vol. 33, pp. 208-229, 2017/08/01/ 2017.
  • 117. S. Mukherjee, “Collaborative governance strategies for a strategic offshore IT outsourcing engagement,” Journal of Global Operations and Strategic Sourcing, vol. 10, pp. 255- 278, 2017.
  • 118. L. Chen, “Investing in the IOT-Based Deep Learning that Makes a Competitive Difference: An Industrial View,” in 2017 International Conference on Network and Information Systems for Computers (ICNISC), 2017, pp. 205-207.
Uwagi
Opracowanie rekordu ze środków MNiSW, umowa Nr 461252 w ramach programu "Społeczna odpowiedzialność nauki" - moduł: Popularyzacja nauki i promocja sportu (2021).
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-49bafb24-a3bb-4258-91e5-029eceae71bc
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.