Tytuł artykułu
Autorzy
Treść / Zawartość
Pełne teksty:
Identyfikatory
DOI
Warianty tytułu
Języki publikacji
Abstrakty
With the advancements in mobile navigation, and thanks to the availability of portable devices, it is possible to calculate the trace and continuously monitor a user’s position. Due to widespread access to smartphones, any person can easily check their location, regardless of where they are at a given moment. This becomes an important factor in everyday life, especially while driving a car in an urban environment or agglomeration. In addition, mobile network operators and service providers themselves use location-based information to monitor and improve the quality of their services. This paper presents the results of a measurement campaign, which was carried out using Android-powered smartphones. The analysis includes four devices, originating from different manufacturers, with varying technical specifications, particularly supporting global navigation satellite systems (GNSSs). The data were gathered while driving a car in various surroundings, including natural as well as manmade objects. The outcomes of the performed experiments may be of particular interest to both scientists and practitioners who rely on navigation systems and services on a daily basis.
Rocznik
Tom
Strony
80--92
Opis fizyczny
Bibliogr. 24 poz., rys., tab.
Twórcy
- Gdansk University of Technology, Poland
autor
- Gdansk University of Technology, Poland
autor
- Gdansk University of Technology, Poland
autor
- Gdansk University of Technology, Poland
autor
- Gdansk University of Technology, Poland
autor
- Military University of Land Forces, KOMAG Institute of Mining Technology, Poland
autor
- Flensburg University of Applied Sciences, Germany
Bibliografia
- 1. Abdelazeem, M., Kamal, H.A. & Wahaballa, A.M. (2024) Investigation of Xiaomi 11T single-frequency GPS positioning for static applications. SVU-International Journal of Engineering Sciences and Applications 5 (2), pp. 1‒6, doi: 10.21608/svusrc.2023.194531.1100.
- 2. Almisreb, A., Mulalić, H.H., Mučibabić, N. & Numanović, R. (2019) A review on mobile operating systems and application development platforms. Sustainable Engineering and Innovation 1 (1), pp. 49‒56, doi: 10.37868/sei.v1i1.94.
- 3. AppBrain (2025) GnssLogger App. [Online]. Available from: https://www.appbrain.com/app/gnssloggerapp/com. google.android.apps.location.gps.gnsslogger [Accessed: March 13, 2025].
- 4. Bahadur, B. & Schön, S. (2024) Improving the stochastic model for code pseudorange observations from Android smartphones. GPS Solutions 28 (3), 148, doi: 10.1007/ s10291-024-01690-y.
- 5. Bogdani, E., Vouyioukas, D. & Nomikos, N. (2016) Localization error modeling of hybrid fingerprint-based techniques for indoor ultra-wideband systems. Telecommunication Systems 63, pp. 223‒241, doi: 10.1007/s11235- 015-0116-4.
- 6. Bramanto, B., Gumilar, I. & Kuswanti, I.A. (2024) Assessment of GNSS observations and positioning performance from non-flagship android smartphones. Journal of Applied Geodesy 18 (2), pp. 189‒209, doi: 10.1515/jag-2023 -0033.
- 7. Chruszczyk, Ł. & Zając, A. (2016) Comparison of indoor/ outdoor, RSSI-based positioning using 433, 868 or 2400 MHz ISM bands. International Journal of Electronics and Telecommunications 62 (4), pp. 395‒399, doi: 10.1515/eletel -2016-0054.
- 8. Developers (2025) Raw GNSS Measurements. [Online]. Available from: https://developer.android.com/develop/sensors-and-location/sensors/gnss [Accessed: March 13, 2025].
- 9. Falkowski-Gilski, P. (2021) Quality of satellite communication in selected mobile Android smartphones. Informatyka, Automatyka, Pomiary w Gospodarce i Ochronie Środowiska 11 (4), pp. 32‒37, doi: 10.35784/iapgos.2751.
- 10. Grzechca, D.E., Pelczar, P. & Chruszczyk, Ł. (2016) Analysis of object location accuracy for iBeacon technology based on the RSSI path loss model and fingerprint map. International Journal of Electronics and Telecommunications 62 (4), pp. 371–378, doi: 10.1515/eletel-2016-0051.
- 11. Hernández Olcina, J., Anquela Julián, A.B. & Martín Furones, Á.E. (2024a) Python toolbox for Android GNSS raw data to RINEX conversion. GPS Solutions 28 (2), 95, doi: 10.1007/s10291-024-01631-9.
- 12. Hernández Olcina, J., Anquela Julián, A.B. & Martín Furones, Á.E. (2024b) Real-time cloud computing of GNSS measurements from smartphones and mobile devices for enhanced positioning and navigation. GPS Solutions 28 (4), 167, doi: 10.1007/s10291-024-01705-8.
- 13. Jaafar, H.A. & Mohammed, J. (2024) Assessing the positional accuracy of raw GNSS data from Android devices. Kufa Journal of Engineering 15 (3), pp. 82‒106, doi: 10.30572/2018/KJE/150306.
- 14. Li, M., Huang, T., Li, W., Zhao, Q. & Jiang, K. (2024) Precise point positioning with mixed single-and dual-frequency GNSS observations from Android smartphones considering code-carrier inconsistency. Advances in Space Research 74 (6), pp. 2664‒2679, doi: 10.1016/j.asr.2023.07.042.
- 15. Mahato, S., Dutta, D., Roy, M., Santra, A., Dan, S. & Bose, A. (2024) Common Android smartphones and apps for cost-efficient GNSS data collection: An overview. IETE Journal of Research 70 (2), pp. 1871‒1884, doi: 10.1080/03 772063.2022.2164369.
- 16. Realme (2025) Realme GT Master Edition. [Online]. Available from: https://www.realme.com/pl/realme-gt-masteredition/specs [Accessed: March 13, 2025].
- 17. Rybka, P., Bąk, T., Sobel, P. & Grzechca, D. (2022) Investigation of the impact of damaged smartphone sensors’ readings on the quality of behavioral biometric models. Sensors 22 (24), 9580, doi: 10.3390/s22249580.
- 18. Sabatini, R., Moore, T. & Ramasamy, S. (2017) Global navigation satellite systems performance analysis and augmentation strategies in aviation. Progress in Aerospace Sciences 95, pp. 45‒98, doi: 10.1016/j.paerosci.2017.10.002.
- 19. Samsung (2025) Galaxy S9+. [Online]. Available from: https://www.samsung.com/us/app/smartphones/galaxy-s9/ specs/ [Accessed: March 13, 2025].
- 20. Specht, C., Dabrowski, P.S., Pawelski, J., Specht, M. & Szot, T. (2019) Comparative analysis of positioning accuracy of GNSS receivers of Samsung Galaxy smartphones in marine dynamic measurements. Advances in Space Research 63 (9), pp. 3018‒3028, doi: 10.1016/j. asr.2018.05.019.
- 21. Szot, T., Specht, C., Specht, M. & Dąbrowski, P.S. (2019) Comparative analysis of positioning accuracy of Samsung Galaxy smartphones in stationary measurements. PLOS One 14 (4), e0215562, doi: 10.1371/journal.pone.0215562.
- 22. Wang, J., Shi, C., Zheng, F., Yang, C., Liu, X., Liu, S., Xia, M., Jing, G., Li, T., Chen, W., Li, Q., Hu, Y., Tian, Y. & Shan, Y. (2024) Multi-frequency smartphone positioning performance evaluation: insights into A-GNSS PPPB2b services and beyond. Satellite Navigation 5 (1), 25, doi: 10.1186/s43020-024-00146-5.
- 23. Xiaomi Mi (2025) Mi 9T. [Online]. Available from: https:// www.mi.com/lk/mi-9-t/specs [Accessed: March 13, 2025].
- 24. Xiaomi POCO (2025) POCO X3 NFC. [Online]. Available from: https://www.po.co/global/poco-x3-nfc/specs/ [Accessed: March 13, 2025].
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-49b64d4d-8fa5-4a18-897c-1208bce76a55
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.