PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

Modeling the Work of Multi-spindle Machining Centers with the Petri Nets

Autorzy
Treść / Zawartość
Identyfikatory
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
The article presents the results of the simulation studies concerning the impact of random production interruptions on the efficiency of multi-spindle machining centers. Four different machining center configuration models were developed using a dedicated class of stochastic Petri nets. In addition to the number of machine spindles, the number of simultaneously mounted parts, loading time of parts, their machining time, and reliability parameters regarding the frequency of machine interruptions caused by random factors were also taken into account as model parameters. A series of virtual tests was carried out for machining processes over a period of 1000 hours of operation. Analysis of the results confirmed the purpose of conducting simulation tests prior to making a decision regarding the purchase of a multispindle milling center. This work fills the existing research gap, as there are no examples in the technical literature of evaluating the effectiveness of multi-spindle machining centers.
Twórcy
  • University of Bielsko-Biala, Faculty of Mechanical Engineering and Computer Science, Willowa 2, 43-309 Bielsko-Biala, Poland
Bibliografia
  • Aderoba, A. (1997). A generalised cost-estimation model for job shops. International Journal of Production Economics, 53(3), 257-263. DOI: 10.1016/S0925-5273(97)00120-5.
  • Al-Ahmari, A.. & Li, Z. (2016). Analysis of a multimachine flexible manufacturing cell using stochastic Petri nets. Advances in Mechanical Engineering, 8(11), 1-9. DOI: 10.1177/1687814016680168.
  • Balbo, G. (2001). Introduction to stochastic Petri nets, In: Brinksma E., Hermanns H. and Katoen J.P. (eds) Lectures on formal Methods and Performance analysis, Springer-Verlag, Berlin, Heidelberg, Germany, 84-155.
  • Chiron Werke, Fast and powerful precision machining centers for profitable production - with one, two or four spindles, https://chiron.de/pdf/series/series_15_en.pdf, accessed 02-08-2022.
  • Dahia, Z., Bellaouar, A., & Dron, J.-P. (2021). Maintenance evaluation and optimization of a multi-state system based on a dynamic bayesian network. Management and Production Review, 12(3), 3–14. DOI: 10.24425/mper.2021.138526.
  • Daniewski, K., Kosicka, E., & Mazurkiewicz, D. (2018). Analysis of the correctness of determination of the effectiveness of maintenance service action. Management and Production Review, 9(2), 20-25. DOI: 10.24425/119522.
  • Esmaeilian, B., Behdad S., & Wang, B. (2016). The evolution and future of manufacturing: a review. Journal of Manufacturing Systems, 39, 79-100. DOI: 10.1016/j.jmsy.2016.03.001.
  • Gola, A., Świć, A., & Kramar, V. (2011). A multiplecriteria approach to machine-tool selection for focused flexibility manufacturing systems. Management and Production Engineering Review, 2(4), 21-32.
  • Grobelna, I., & Karatkevich, A. (2021). Challenges in Application of Petri Nets in Manufacturing Systems. Electronics, 10, 2305. DOI: 10.3390/electronics10182305.
  • Kaid, H., El-Tamimi, A.M., Nasr, E.A., & Al-Ahmari, A. (2015). Applications of Petri nets based models in manufacturing systems: a review. Proceedings of the 2015 International Conference on Operations Excellence and Service Engineering, Orlando, USA, 526-528.
  • Kiritsis, D., Porchet, M., & Belhi, A. (1994). A generic Petri net model for dynamic process planning. ASME 1994 International Computers in Engineering Conference and Exhibition, 235-242. DOI: 10.1115/CIE1994-0406.
  • Kopania, G., & Kuczmaszewska, A. (2021). New characteristics in the assessment of reliability of machines and devices. Management and Production Review, 12(4), 45-52. DOI: 10.24425/mper.2021.139994.
  • Lee, K.H., & Jung, M.Y. (1995). Flexible process sequencing using petri net theory. Computers & Industrial Engineering, 28(2), 279-290. DOI: 10.1016/0360-8352(94)00191-O.
  • Nurprihatin, F., Angely, M., & Tannady, H. (2019). Total Productive Maintenance Policy to Increase Effectiveness and Maintenance Performance Using Overall Equipment Effectiveness. Journal of Applied Research on Industrial Engineering, 6(3), 184-199. DOI: 10.22105/jarie.2019.199037.1104.
  • Nurprihatin, F., Ayu, Y.N., Rembulan, G.D., Andry, J.F., & Lestari T.E. (2023). Minimizing product defects based on labor performance using linear regression and six sigma approach. Management and Production Review, 14(2), 88-98. DOI: 10.24425/mper.2023.146026.
  • Pekarčikowá, M., Trebuna, P., Kliment, M., Trojan, J., Kopec, J., Dic, M., & Kronova, J. (2023). Case Study: Testing the Overall Efficiency of Equipment in the Production Process in TX Plant Simulation Software. Management and Production Review, 14(1), 34-42. DOI: 10.24425/mper.2023.145364.
  • Petri, C.A. (1962). Kommunikation mit automaten, Ph.D. Thesis, University of Bonn, Germany.
  • Pla, A., Gay, P., Meléndez, J., & López, B. (2014). Petri net-based process monitoring: a workflow management system for process modelling and monitoring. Journal of Intelligent Manufacturing, 25, 539-554. DOI: 10.1007/s10845-012-0704-z.
  • Rudas, I.J., & Horvát, L. (1997). Modelling of manufacturing processes using a Petri-net representation. Engineering Applications of Artificial Intelligence, 10(3), 243-255. DOI: 10.1016/S0952-1976(97) 00006-7.
  • Srihari, K., & Emerson, C.R. (1990). Petri nets in dynamic process planning. Computers & Industrial Engineering, 19(1–4), 447-451. DOI: 10.1016/0360-8352(90)90156-G.
  • Stryczek, R. (2009). A meta-heuristics for manufacturing systems optimization. Advances in Manufacturing Science and Technology, 33(2), 23-32.
  • Stryczek, R. (2018). Petri networks in the planning of discrete manufacturing processes, in: CamposRodriguez R. (ed.) Petri Nets in Science and Engineering. IntechOpen, London, 37-56. DOI: 10.5772/intechopen.75135.
  • Tigane, S., Kahloul, L., & Bourekkache, S. (2017). Reconfigurable stochastic Petri nets for reconfigurable Manufacturing systems. Studies in Computational Intelligence, 694, 383-391. DOI: 10.1007/978-3-319-51100-9_34.
  • Tuncel, G., & Bayha, G.M. (2007). Applications of Petri nets in production scheduling: A review. The International Journal of Advanced Manufacturing Technology, 34, 762-773. DOI: 10.1007/s00170-006-0640-1.
  • Tüysüz, F., &Kahraman, C. (2010). Modeling a flexible manufacturing cell using stochastic Petri nets with fuzzy parameters. Expert Systems with Applications, 37(4), 3910-3920. DOI: 10.1016/j.eswa.2009. 11.026.
  • Uzam, M. (2004). The use of the petri net reduction approach for an optimal deadlock prevention policy for flexible manufacturing systems. The International Journal of Advanced Manufacturing Technology, 23, 204-219. DOI: 10.1007/s00170-002-1526-5.
  • Vigel Manufacturing Technologies, https://www.vigel. om/products/machining-centers, accessed 02-08-2022.
  • Xirouchakis, P., Kiritsis, D., Gunther, C., & Persson, J.G. (1999). A Petri net technique for batch delivery time estimation. CIRP Annals, 48(1), 361-364. DOI: 10.1016/S0007-8506(07)63202-8.
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-49b5e241-1ae6-4e18-bf7a-534d3cc3c6d8
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.