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1. Introduction 
 

Importance Measures (IMs) are used to rank the 
contributions of components or basic events to the 
system performance, which can be, for example, the 
system reliability or risk. IMs were initially introduced 
by Birnbaum [1] in order to assess the contribution of 
the components to the overall system reliability; later 
different IMs have been introduced to address various 
aspects of reliability, safety and risk significance 
(Fussel-Vesely, Criticality, Risk Achievement Worth 
and Risk Reduction Worth) [2]. 
On the other hand, uncertainties of two types affect the 
behavior of a system [3]: aleatory and epistemic; the 
former type (also referred to as irreducible or 
stochastic or random uncertainty) describes the 
inherent variation associated with the physical system 
or the environment (e.g. variation in atmospheric 
conditions, in fatigue life of compressor and turbine 
blades); the latter (also referred to as subjective or 
reducible uncertainty) is, instead, due to a lack of 
knowledge of quantities or processes of the system or 
the environment (e.g. lack of experimental data to 
characterize new materials and processes, poor 
understanding of coupled physics phenomena, poor 
understanding of accident initiating events). 
In practice IMs are calculated without due account of 
uncertainties. The objective of this work is then to 
investigate how uncertainties can influence IMs and 
how they can be accounted for. The uncertainties 
considered are of epistemic type and represented by 
probability density functions. A method is proposed for 

ranking the contributors to the system performance 
measure. 
The paper is organized as follows. In Section 2, the 
problem of comparing the importance measures of two 
components whose reliabilities are uncertain is 
presented to explain the idea beyond the ranking 
method. In Section 3, two case studies are described: 
the first applies the comparison method on the 
components of a simple system, when uncertainties 
affect their reliabilities; the second validates the 
method on a large system for which a procedure is 
introduced for efficiently performing the ranking. 
Some conclusions are provided with regards to the 
comparison between the proposed procedure and a 
method previously presented in the literature [4]. 
 
2. Comparing the importance of two 
components in presence of uncertainties. 
 

The aim of this Section is to present a procedure for 
comparing the importance of two components A and B 
of an hypothetical system in presence of uncertainty. In 
general, with respect to the uncertainty representation, 
when sufficiently informative data are available 
probabilistic distributions are righteously used. The 
uncertainties associated with the components 
performance characteristics should then be propagated 
through the system model, leading to uncertainties in 
the system performance. Hence, when performing 
importance measures calculations in presence of 
uncertainties affecting the components performances, 
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the results should properly account for such 
uncertainties and so should the ranking. 
For simplicity, uniformly distributed uncertainty is 
assumed to be affecting directly the IMs of 
components A and B. Table 1 reports the range of the 
IMs distributions while Figures 1 a and b show the 
corresponding distributions. The IM of component B is 
significantly more uncertain than that of component A. 
 
Table 1. Uniform distributions parameters. 
 

 Uniform distribution 
 Lower limit a upper limit b 
A 0.0141 0.0155 
B 0.002 0.0178 

 
Looking at the distributions of A and B IMs (IA and IB) 
one may observe that E[IA] is greater than E[IB]; on the 
other hand there is a range in which the IB quantiles are 
larger than the IA ones. For example, if one were to 
perform the ranking based on the IMs 95th quantile 
values, the conclusion would be that component B is 
more important than A.  
 

 
 

Figure 1. Probability density functions (pdf) and 
cumulative distribution functions (cdf) of the random 
variables IA, IB (a and b) and IA-IB (c and d) in case of 
IMs with uniformly distributed uncertainties. 
 
The drawback of comparing the values corresponding 
to specific quantiles lies in the loss of information 
about the distribution: with reference for example to 
Figure 1, the fact that the 95th quantile of IA (0.015) is 
lower than the 95th quantile of IB (0.017) only means 
that the point value which IA is lower than with 
probability of 0.95 is lower than the analogous point 
value for IB. The full information on the actual 

difference between the distributions of IA and IB does 
not play any role. 
An obvious way to give due account to the difference 
between the distributions is to consider the random 
variable (rv) IA-IB whose pdf and cdf are shown in 
Figures 1c and 1d, respectively. The details on their 
analytical expressions are given in Appendix 1. In 
order to establish if component A is more important 
than B, one can consider the probability 1-FAB(0) that 
IA is greater than IB; for example, in the present case 
rAB=P(IA>IB)=1-FAB(0)=0.81, which means that with 
high probability component A is more important than 
B. 
According to the above procedure for comparing the 
importance of two components A and B, it is necessary 
to fix a threshold T on the rAB value: if 1- FAB(0) is 
larger than T, then A is more important than B, 
otherwise no conclusion can be given. For example 
one may take T=0.5 or T=0.7; the lower the threshold 
the higher the risk associated with the decision. On the 
other hand, the choice of a crisp threshold as a 
probabilistic exceedance measure has some intrinsic 
limitations summarized in the following points: 

• rAB could fall just on T: in this case given the 
inevitable approximations and uncertainties 
related to the estimation of the IMs 
distributions, no robust conclusion can be 
given on the components importance (see 
Section below). 

• Considering three components, A, B and C 
whose IMs are such that the cdf values in 0 of 
the IM differences fall very close to T, it could 
happen that IA>IB, IB>IC and IC>IA. 

These limitations can partially be overcome by taking 
not a crisp value of T but a range [Tl,Tu] (for example 
0.4-0.6 or 0.3-0.7). Given two components A and B 
and the difference IA-IB: 

• If rAB> Tu, then A is more important than B. 
• If rAB< Tl, then B is more important than A. 
• If T l <rAB< Tu, then A is equally important to 

B. In this case, different kinds of additional 
constraints/targets can guide the ranking order 
(costs, times, impacts on public opinion etc). 

It may be of interest to relate the results provided by 
the probabilistic exceedance measure rAB=P(IA>IB) to 
the standard deviations of the IMs distributions, σIA 

and σIB. Figure 2 shows the variation of rAB for 
increasing values of the standard deviations σIA and σIB, 
keeping fixed the mean values of IA and IB and the 
ratio k=σIA/σIB. In the extreme case of no uncertainties 
on the knowledge of IA and IB (σIA=0 and σIB=0), 
component A is more important than B and thus rAB=1. 
Increasing the standard deviations, rAB=1 holds as long 
as the pdfs of IA and IB do not overlap, i.e. IA and IB are 
uncertain quantities but it is not uncertain that IA>IB. 
Finally, as the overlapping between pdfs increases rAB 
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decreases. From these considerations one can argue 
that uncertainties on the IMs can affect the rank order 
and the reduction of the uncertainties should be, in 
certain cases, considered for decreasing the risk 
associated with the decision. 
 

 
 

Figure 2. rAB vs σIA and σIB, keeping σIA/σIB, E[IA] and 
E[IB] constant. 
 
3. An empirical procedure to rank component 
importance. 
 

In the previous Section, a probabilistic measure of 
exceedance between two rvs has been utilized to 
compare components importance measures in presence 
of uncertainties. To extend the method to large 
numbers of components, a procedure for successive 
ranking must be introduced to avoid the combinatorial 
explosion of pairwise comparisons. The method 
proposed in this paper is an application of one of the 
most common sorting algorithms, Quicksort [5], which 
proceeds by choosing an element, called a pivot, and 
moving all smaller elements before the pivot and all 
larger elements after it. In the present case the order 
relation between the elements is guided by the measure 
of exceedance introduced in Section 2. To illustrate the 
method, two case studies have been examined: 

1. failure rates lognormally distributed for a three 
components system; this case allows us to test 
the ranking criterion; 

2. failure rates lognormally distributed for a more 
complex system; this case study allows us to 
explain in details the ranking procedure, with 
its advantages and limitations. 

For simplicity only the Birnbaum IM is considered, the 
reasoning remaining exactly the same for the other 
IMs. 

3.1 Three components system 
 

The system, sketched in Figure 3, is made up of a 
series of 2 nodes: the first is constituted by 2 
components in parallel logic, the second by a single 
component. To each of these components, a crisp 
reliability value has been assigned so that the IM 
values reported in Table 2, third column, for 
components A and B are the same as those considered 
in Section 2. Different IM values of the three 
components are given in Table 2, columns 3-6. 
 

 
 

Figure 3. System Reliability Block Diagram. 

 
Table 2. Components Reliability and Importance 
Measures. 
 

 Reliability  Birnbaum F-V Criticality RAW RRW 

A 0.988 0.0149 0.0012 0.0010 1.08 1.00 

B 0.982 0.0099 0.0012 0.0010 1.05 1.00 

C 0.825 0.9997 0.9989 0.9987 5.70 811 

 
The components are assumed exponential, i.e. with 
constant failure rate λi, i=A, B, C. Uncertainties in the 
failure rates are described by lognormal distributions, 
(Figure 4, left), with parameters given in Table 3: 
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At each time instant t the reliability of component i is: 
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with pdf (for 0<λi<1) (Figure 4, right): 
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The parameters of the distributions of the failure rates 
have been chosen such that the mean values of the 
reliability at time t=1200 (in arbitrary units of time) are 
equal to the values in column 3 of Table 2. In Figures 



Baraldi Piero, Zio Enrico, Compare Michele 
Importance Measures in presence of uncertainties 

 

 36 

5 a and b, the pdfs of the failure rates and reliabilities 
at time t=1200 are reported for all three components. 
 

 
 

Figure 4. Lognormal distributions of the failure rate of 
component A (left) and corresponding pdfs of the 
reliability at different time instants (right). 

 
Table 3. Parameters of the lognormal distributions of 
the components failure rates. 
 

i Mean Variance 
A 1.000e-005 1.649e-010 
B 1.487e-005 1.076e-009 
C 1.593e-004 1.694e-008 

 
In spite of the simplicity of the considered system, 
finding the Birnbaum IM distributions by an analytical 
approach is impracticable. To overcome these 
difficulties Monte Carlo sampling has been applied. 
The resulting distributions are plotted in Figures 5 c 
and d. It can be noted that the distribution of the IM of 
component C is displaced to larger values than A and 
B, which leaves no doubt that the most important 
component is C, as expected from the structure of the 
system. As for the ranking of A and B, one must 
compute the probability P(IA>IB).The result obtained 
by Monte Carlo sampling is rAB=0.49997 which leads 
us to conclude that IA=IB. On the contrary, the 
Birnbaum IM values in Table 2, column 3, neglecting 
uncertainties, would lead to the conclusion that A is 
more important than B. 
 
3.2 A more complex system 

When the number of components in the system is 
large, the number of pairwise comparisons of their IMs 
increases dramatically. This calls for a systematic 
procedure of analysis to efficiently perform the 
importance ranking. Let us consider a system made up 
of a series of three nodes: the first is a 2-out-of-3 
subsystem, the second consists of a single element and 
the third is a parallel system of two components. The 
Reliability Block Diagram (RBD) is reported in Figure 

6. Table 4 contains the data relative to the distribution 
of the components failure rates and reliabilities. The 
corresponding pdfs are plotted in Figure 7. 
 

Figure 5. pdfs of the failure rate (a), reliability (b) and 
Birnbaum IM (c and d) of the three components. 
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Figure 6. RBD of the system. 
 
Table 4. Parameters of the lognormal distribution of 
the components failure rates. 
 

i Reliability Mean Variance IM 
A 0.98 8.37e-5 1.68e-8 0.056 
B 0.97 1.26e-4 7.1e-10 0.048 
C 0.96 1.69e-4 2.5e-8 0.040 
D 0.825 7.97e-4 2.94e-6 0.99 
E 0.988 5e-5 1.99e-8 0.015 
F 0.982 7.52e-5 9.88e-9 0.009 

 

 
 

Figure 7. Failure Rate distributions. 
 
The ranking procedure proposed in this Section is an 
application of one of the most famous sorting 
algorithms, Quicksort [5], to the probabilistic measure 
of exceedance r ij=P(Ii>Ij) introduced in the previous 
Sections. Quicksort is a divide and conquer algorithm 
which relies on a partition operation: to partition an 
array, one chooses an element, called a pivot, moves 
all smaller elements before the pivot and all larger 
elements after it. In the iterative procedure, one then 
recursively sorts internally the sublists of smaller and 
larger elements. In the case of interest here, starting 
from the components rankings based on the reliability 
mean values, one chooses as pivot element the most 
important component, i.e. the one with larger 
importance measure Ip calculated based on the mean 
reliabilities. The rpj=P(Ip>Ij) is calculated for each j≠p 
and the pre-defined threshold value T states the 

relation order between p and j, with respect to their 
Fpj(0) cdf values. 
 
Table 5. Column 1 reports the ranking obtained 
without considering uncertainties in the IMs; columns 
2-6 the probability that the component in the row 
exceeds the component in the column; the last column 
shows the ranking obtained by the proposed method. 
 
Mean 

ranking 
A B C E F Final 

rank 
D 1 1 1 1 1 D 
A  0.812 0.768 0.948 0.964 A 
C  0.512  0.907 0.945 C,B 
B    0.887 0.935 C,B 
E     0.712 E 
F      F 

 
By proceeding this way, the components are ordered in 
function of their distance from the pivot element. 
When a swapping occurs between the ranks of two 
components, the check on the exceedance measure is 
repeated for all the components downstream the 
sublist. Doing so, it may happen that Ri>Rj, Rj=Rk and 
Rk=Ri: in this case, i, j and k are considered equally 
important. The results obtained by applying this 
procedure on the system in Figure 6 are reported in 
Table 5. 
As expected from the structure of the system, 
component D is the most important one, followed by 
the components in the 2-out-of-3 subsystem. In 
particular, component A is the most important of this 
subsystem, then, components B and C result with the 
same importance; on the contrary, referring to the 
mean ranking, component B results more important 
than component C. Finally, components E and F (in the 
parallel subsystem of Figure 6) are prioritized 
accordingly to the general rule that the Birnbaum IM 
of components in parallel systems decreases with 
decreasing reliability of the components, both 
neglecting (Table 4, column 7) and accounting for 
uncertainties (Table 5, column 7). 
As a term of comparison, the procedure proposed in [4] 
has been applied for the computation of an alternative 
measure of exceedance *

ijr . It is based on the following 

two steps: 
1. Estimation, for each component, of the 

probability of occupying a specific order in the 
ranking (probability mass function). This is 
achieved by performing Monte Carlo 
sampling: at each trial the components are 
given a rank order Ri i=A, B, …,F. Figure 8 
provides the distributions of the obtained rank 
orders. 

2. Computation of the measure of exceedance *
ijr  

defined as: 

2oo3 
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The results obtained when applying this procedure are 
reported in Table 6. 
 
Table 6. Rank order obtained by applying the 
alternative exceedance measure proposed in [4]. 
 

rank 

mean 

rankin

g 

A B C E F Final 

Rank

ing 

1 D 
1 1 1 1 1 

D 

2 A 
 0.895 0.88

8 

0.981 0.987 

A 

3 B 
  0.64

9 

0.935 0.961 

B,C 

4 C 
 0.665  0.944 0.966 

B,C 

5 E 
    0.871 

E 

6 F 
     

F 

 
For what concerns the final ranking, the two methods 
considered provide the same results. Notice, however, 
that if one considers a different range [Tl,Tu], for 
example [0.4,0.6] instead of [0.3,0.7] the method 
proposed in [4] leads to ranking component B more 
important than C whereas with the method here 
proposed, B and C have the same importance. 
Moreover, if one considers a very small range, for 
example [Tl,Tu]=[0.49,0.51], then the method in [4] 
determines the ranking A, B, C for the IMs whereas the 
proposed method establishes A, C, B. 
 

 
 

Figure 8. Probability mass functions of the rank order 
Ri, i=A, …, F. 
 

The differences in the ranking of the two methods are 
caused by the different values of the exceedance 
measures between components B and C (Tables 5 and 
6). In particular, the method proposed in this work 
results in rCB=P(IC>IB)=0.512, whereas the method in 
[4] results in *

CBr =P(IC>IB)=0.665. Notice that rCB 

depends only on the importance measures of B and C 
whereas *

CBr  depends on the probability that a 

component occupies a specific order and thus also on 
the importance measures of the other components of 
the system. Moreover, another reason to prefer the 
procedure here proposed is that in the procedure 
proposed in [4], after each MC sampling the IMs of the 
components are used only to obtain a rank order, 
loosing the information on the actual numerical 
differences of the IMs. Finally, whereas for r ij it holds 
that r ij =1- rji, this property is not valid for *

ijr , (for 

example, with reference to Table 6, *
CBr =0.665 and 

649.0* =BCr ). This means that the final ranking order 

may depend on the choice of the pivot in the Quicksort 
algorithm.  
 
Conclusions and future works 

In this work, a procedure is proposed for ranking 
system components in order of importance when in 
presence of uncertainties affecting the components 
reliabilities. The procedure is based on the definition of 
a probabilistic exceedance measure that permits to 
compare the importance of two components and can be 
summarized as follows: 
1. Rank the components’ importances according to 

their IMs computed by considering the expected 
values of their reliabilities, thus without 
considering uncertainties. 

2. Define the range [Tl,Tu] of values of the 
probabilistic exceedance measure rpj; for values rpj 
in this range it is not possible to decide if Ip>Ij or 
Ip<Ij and this leads to consider components p and j 
as equally important. 

3. Apply the Quicksort algorithm based on 
rpj=P(Ip>Ij): 
3.1. Put the components in the rank order found in 

step 1.  
3.2. Choose the first element of the list (sublist) as 

pivot element, p. 
3.3. For each j in the sublist compute the cdf, Fpj, of 

Ip-Ij and evaluate rpj=1- Fpj(0): 
- If rpj >Tu , then put j in the sublist of 
elements less important than p. 
- If rpj <Tl , then put j in the sublist of 
elements more important than p. 
- If rpj falls in [Tl,Tu], then p is equally 
important to j. 
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4. For each sublist go to 3.2 until no sublist with 
more than one element exists. 

 
The application of the proposed procedure to two case 
studies has shown the importances of considering 
uncertainties in the computation of IMs: the ranking of 
the components’ importance obtained neglecting the 
uncertainties affecting the component reliabilities can 
be different from the ranking obtained by considering 
uncertainties using the procedure proposed in this 
work. 
Compared to another approach proposed in the 
literature, the procedure here presented seems to offer 
some advantages as, for example, the independence of 
the final rank from the choice of the pivot element in 
the Quicksort algorithm.  
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Appendix 1 

Given a generic uniform rv x≈U(a,b), its moment 
generating function (mgf) is given by: 
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The rv r=IA-IB is the convolution of two uniformly 
distributed random variables and in particular: 
 
   IA≈U(aIA,bIA); 
 
   -IB≈U(-bIB,-aIB); 
 
The mgf of r is given by: 
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For what concerns the inverse transformation, it could 
be noted that r mgf can be regarded as the algebraic 
sum of functions linearly increasing/decreasing with 
the same slope. So the pdf and cdf of r are given by: 
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