
JAISCR, 2023, Vol. 13, No. 4, pp. 215

TOWARDS ENSURING SOFTWARE INTEROPERABILITY
BETWEEN DEEP LEARNING FRAMEWORKS

Youn Kyu Lee1, Seong Hee Park1, Min Young Lim1, Soo-Hyun Lee1, Jongwook Jeong2,∗

1Department of Computer Engineering, Hongik University,
94 Wausan-ro, Mapo-gu, Seoul (04066), Republic of Korea

2Department of Computer Science and Artificial Intelligence, Jeonbuk National University,
567 Baekje-daero, Deokjin-gu, Jeonju-si (54896), Republic of Korea

∗E-mail: jwjeong55@jbnu.ac.kr

Submitted: 26th June 2023; Accepted: 11th September 2023

Abstract

With the widespread of systems incorporating multiple deep learning models, ensuring
interoperability between target models has become essential. However, due to the unreli-
able performance of existing model conversion solutions, it is still challenging to ensure
interoperability between the models developed on different deep learning frameworks. In
this paper, we propose a systematic method for verifying interoperability between pre- and
post-conversion deep learning models based on the validation and verification approach.
Our proposed method ensures interoperability by conducting a series of systematic veri-
fications from multiple perspectives. The case study confirmed that our method success-
fully discovered the interoperability issues that have been reported in deep learning model
conversions.
Keywords: deep learning, interoperability, validation&verification, deep learning frame-
works, model conversion

1 Introduction

With the increasing use of artificial intelligence
(AI) software, a number of deep learning (DL)
frameworks for AI software development have been
published [1, 2], such as TensorFlow [3], Keras [4],
and PyTorch [5]. Since each DL framework of-
fers different characteristics in terms of grammar,
underlying mechanisms, and performance, engi-
neers can select a particular framework depending
on their purposes, development constraints, deploy-
ment environments, and preferences [1]. However,
recently, as the need for incorporating multiple DL
models (e.g., federated learning, ensemble learning,
DL model compression, and DL model fusion in-

creases), it has become important to ensure interop-
erability between DL models developed on different
DL frameworks [6, 7, 8]. For example, to improve
a target system’s inference performance, it might be
required to ensemble two different models, one de-
veloped on TensorFlow and the other developed on
PyTorch. Another example can be the requirement
to convert a PyTorch model into C language in order
to deploy it on embedded systems.

Ensuring interoperability between DL models
requires a reliable conversion process that allows
a model developed on a particular DL framework
to be deployed on another framework without any
failure. To date, a variety of tools, such as Open
Neural Network Exchange (ONNX) [9], Neural

10.2478/jaiscr-2023-0016
 – 228

216 Youn Kyu Lee, Seong Hee Park, Min Young Lim, Soo-Hyun Lee, Jongwook Jeong

Network Exchange Format (NNEF) [10], Model
Management deep neural network (MMdnn) [11],
Neural Network Tools (nn tools) [12], and py-
torch2keras [13], have been proposed to facilitate
automated conversion of DL models.

However, due to their unreliable conversion per-
formance, it is challenging to guarantee interoper-
ability between pre- and post-conversion DL mod-
els [11, 14, 15]. Several cases of incorrect conver-
sions that led to deployment errors and performance
inconsistencies have been reported [14, 15]. Never-
theless, systematic verification methods for ensur-
ing interoperability between DL models have not
yet been developed. For example, sample testing, a
general method for assessing the inference perfor-
mance of DL models, is insufficient to verify inter-
operability between target models. Because the re-
sults may vary depending on the test dataset or the
corner cases that can be discovered from other per-
spectives can be overlooked. Hence, it is required
to develop a robust and systematic method for veri-
fying the interoperability between DL models.

In this paper, we propose a new method for
verifying interoperability between DL models from
multiple perspectives based on the validation and
verification (V&V) approach. V&V approach,
which conducts both architecture-level and code-
level verification, is being used for minimizing soft-
ware erosion that can be caused by changes in tar-
get software [16, 17]. Our proposed method adapts
the V&V approach to minimize software erosion
that occurs during DL model conversion. Specif-
ically, our method involves architectural valida-
tion of DL model, which verifies whether a target
model’s architecture is maintained after conversion.
Our method also includes verification based on per-
formance analyses, which confirms whether a tar-
get model’s accuracy, inference values, and time
were maintained after conversion. Our approach
enables the identification of conversion issues that
cannot be discovered by single-perspective analy-
sis. For example, in the case when the architectural
configuration of a target model was converted cor-
rectly but its weight values were not maintained,
our multi-perspective method can detect interop-
erability issues that a single-perspective analysis
(e.g., architecture-level analysis) cannot discover.
To evaluate the effectiveness and applicability of
our proposed method, we conducted case stud-

ies including representative open-source conversion
tools, such as ONNX, NNEF, MMdnn, and py-
torch2keras. The results confirmed that our pro-
posed method was able to successfully validate
and verify interoperability between pre- and post-
conversion DL models.

The main contributions of this paper are as fol-
lows: (1) Proposal of a new method for ensur-
ing interoperability between DL models; (2) Pro-
viding an effective process compatible with and
adaptable to existing DL frameworks and conver-
sion tools; (3) Design of a systematic process in-
tegrating multi-perspective validation and verifica-
tion mechanisms; and (4) Evaluation on real-world
cases including popular models, frameworks, and
conversion tools. This paper is organized as fol-
lows. Section 2 presents related work. Section 3
describes our approach, and Section 4 illustrates our
case studies and their results. Threats to validity are
discussed in Section 5, and Section 6 provides the
conclusion of this study and future work.

2 Related Work

2.1 Deep Learning Model Conversion

To use DL models in various environments,
a number of tools have been developed to facil-
itate the conversion between different DL frame-
works [9, 10, 11, 12, 13]. ONNX and NNEF, repre-
sentative open-source DL tools, enable a target DL
model to be run on a target framework by defining
specification rules such as intermediate representa-
tion.

ONNX, developed by Microsoft and Face-
book, provides high-fidelity conversion between
DL frameworks. As shown in Figure 1, ONNX
supports a variety of DL frameworks, including
PyTorch, Caffe2 [18], Keras, and MXNet [19].
NNEF, developed by Khronos Group, enables a DL
model to be deployed on different types of infer-
ence engines. By encapsulating a model’s structure,
operations, and parameters, NNEF supports reli-
able conversions between DL frameworks, includ-
ing PyTorch, Caffe [20], and TensorFlow. MMdnn,
an open-source tool developed by Microsoft, sup-
ports conversion between DL frameworks such as
TensorFlow, PyTorch, Keras, and Caffe. nn tools,
a Python-based open-source tool, provides con-

217Youn Kyu Lee, Seong Hee Park, Min Young Lim, Soo-Hyun Lee, Jongwook Jeong

Network Exchange Format (NNEF) [10], Model
Management deep neural network (MMdnn) [11],
Neural Network Tools (nn tools) [12], and py-
torch2keras [13], have been proposed to facilitate
automated conversion of DL models.

However, due to their unreliable conversion per-
formance, it is challenging to guarantee interoper-
ability between pre- and post-conversion DL mod-
els [11, 14, 15]. Several cases of incorrect conver-
sions that led to deployment errors and performance
inconsistencies have been reported [14, 15]. Never-
theless, systematic verification methods for ensur-
ing interoperability between DL models have not
yet been developed. For example, sample testing, a
general method for assessing the inference perfor-
mance of DL models, is insufficient to verify inter-
operability between target models. Because the re-
sults may vary depending on the test dataset or the
corner cases that can be discovered from other per-
spectives can be overlooked. Hence, it is required
to develop a robust and systematic method for veri-
fying the interoperability between DL models.

In this paper, we propose a new method for
verifying interoperability between DL models from
multiple perspectives based on the validation and
verification (V&V) approach. V&V approach,
which conducts both architecture-level and code-
level verification, is being used for minimizing soft-
ware erosion that can be caused by changes in tar-
get software [16, 17]. Our proposed method adapts
the V&V approach to minimize software erosion
that occurs during DL model conversion. Specif-
ically, our method involves architectural valida-
tion of DL model, which verifies whether a target
model’s architecture is maintained after conversion.
Our method also includes verification based on per-
formance analyses, which confirms whether a tar-
get model’s accuracy, inference values, and time
were maintained after conversion. Our approach
enables the identification of conversion issues that
cannot be discovered by single-perspective analy-
sis. For example, in the case when the architectural
configuration of a target model was converted cor-
rectly but its weight values were not maintained,
our multi-perspective method can detect interop-
erability issues that a single-perspective analysis
(e.g., architecture-level analysis) cannot discover.
To evaluate the effectiveness and applicability of
our proposed method, we conducted case stud-

ies including representative open-source conversion
tools, such as ONNX, NNEF, MMdnn, and py-
torch2keras. The results confirmed that our pro-
posed method was able to successfully validate
and verify interoperability between pre- and post-
conversion DL models.

The main contributions of this paper are as fol-
lows: (1) Proposal of a new method for ensur-
ing interoperability between DL models; (2) Pro-
viding an effective process compatible with and
adaptable to existing DL frameworks and conver-
sion tools; (3) Design of a systematic process in-
tegrating multi-perspective validation and verifica-
tion mechanisms; and (4) Evaluation on real-world
cases including popular models, frameworks, and
conversion tools. This paper is organized as fol-
lows. Section 2 presents related work. Section 3
describes our approach, and Section 4 illustrates our
case studies and their results. Threats to validity are
discussed in Section 5, and Section 6 provides the
conclusion of this study and future work.

2 Related Work

2.1 Deep Learning Model Conversion

To use DL models in various environments,
a number of tools have been developed to facil-
itate the conversion between different DL frame-
works [9, 10, 11, 12, 13]. ONNX and NNEF, repre-
sentative open-source DL tools, enable a target DL
model to be run on a target framework by defining
specification rules such as intermediate representa-
tion.

ONNX, developed by Microsoft and Face-
book, provides high-fidelity conversion between
DL frameworks. As shown in Figure 1, ONNX
supports a variety of DL frameworks, including
PyTorch, Caffe2 [18], Keras, and MXNet [19].
NNEF, developed by Khronos Group, enables a DL
model to be deployed on different types of infer-
ence engines. By encapsulating a model’s structure,
operations, and parameters, NNEF supports reli-
able conversions between DL frameworks, includ-
ing PyTorch, Caffe [20], and TensorFlow. MMdnn,
an open-source tool developed by Microsoft, sup-
ports conversion between DL frameworks such as
TensorFlow, PyTorch, Keras, and Caffe. nn tools,
a Python-based open-source tool, provides con-

TOWARDS ENSURING SOFTWARE INTEROPERABILITY . . .

version between DL models as well as analysis
of model layer information such as input, output,
and weight size. However, it only supports one-
way conversion from PyTorch to Caffe. More-
over, various open-source conversion tools have
been developed, such as pytorch2caffe [21] and py-
torch2keras. However, it has been reported that
interoperability issues, such as inference perfor-
mance degradation or model architecture modifica-
tion, occur when converting DL models with exist-
ing tools [22, 23].

2.2 Validation and Verification

Validation and verification (V&V) is a repre-
sentative process for developing a reliable software.
[17] proposed a V&V process specifically designed
for model-based software engineering. Since typi-
cal model-based software engineering presents au-
tomatically generated code (AGC) based on a de-
fined model, their V&V process includes verifica-
tion for AGC. Although a converted DL model can
also be classified as an AGC, since their process has
mainly focused on generic software, its direct appli-
cation to DL model conversion is infeasible. Specif-
ically, their process provides a set of tasks to verify
the interoperability between a defined model and its
AGC, which is not directly applicable to verification
between pre- and post-conversion DL models.

For systems using neural networks, [24] pro-
posed a V&V process for statistically estimating
the reliability of pre-trained neural networks. Their
proposed process verifies whether the target neu-
ral network can be deployed in mission-critical sys-
tems, such as flight control systems. However, their
process was unsuitable for verifying conversion be-
tween DL models, as it focused primarily on de-
velopment lifecycles specialized for systems using
pre-trained neural networks. Thus, their process is
not directly applicable to DL model interoperability
verification. To ensure interoperability between DL
models, a specialized and systematic V&V process
is required.

3 Proposed Method

In this section, we present our proposed method
for ensuring interoperability between DL models.
Our proposed method facilitates minimization of

conversion errors and inconsistencies, which may
occur during cross-framework conversions of DL
models. As shown in Figure 1, a DL model (M1)
implemented in a particular framework (e.g., Keras)
can be converted to a DL model (M2) implemented
in the other framework (e.g., PyTorch) using con-
version tools such as ONNX. Despite being im-
plemented in different frameworks, the two models
(i.e., M1 and M2) should ensure interoperability by
providing the same inference operations and perfor-
mance. With pre- and post-conversion DL models,
our method verifies interoperability between them
via four main steps from different perspectives. An
overview of our method is illustrated in Figure 2,
and details of each step are described in the follow-
ing subsections.

3.1 Step1: Architectural Analysis

In this step, by analyzing the architectural char-
acteristics of target models (i.e., pre- and post-
conversion DL models), their interoperability is
verified. Specifically, the following conditions are
evaluated in this step: (Condition#1) whether each
layer of a pre-conversion model has been con-
verted to a layer that performs the same operation
after conversion; (Condition#2) whether the con-
nections between layers in a pre-conversion model
have been preserved; and (Condition#3) whether
each layer’s hyperparameters in a pre-conversion
model are preserved. For example, during a con-
version, a “MaxPool2d” layer in a PyTorch model
can be converted to a “MaxPooling2D” layer in a
Keras model, while some connections between lay-
ers have been removed. Thus, architectural analy-
sis is essential to confirm interoperability as these
architectural changes may be neglected in sample
testing. Architectural analysis is divided into two
sub-steps, Step1-A, which validates Conditions#1
and #2, and Step1-B, which validates Condition#3.
Note that, since each sub-step is independent and
complementary to each other, even if Step1-A has
not been passed, Step1-B should be validated for
complete validation.

– Step1-A. Architectural changes can be distinctly
identified through visualization-based analysis.
In visualization-based analysis, pre- and post-
conversion DL models are compared at the
architectural-level by visualizing their layer

218 Youn Kyu Lee, Seong Hee Park, Min Young Lim, Soo-Hyun Lee, Jongwook Jeong

Figure 1. Interoperability between DL frameworks supported by ONNX

Figure 2. An overview of our proposed method

219Youn Kyu Lee, Seong Hee Park, Min Young Lim, Soo-Hyun Lee, Jongwook Jeong

Figure 1. Interoperability between DL frameworks supported by ONNX

Figure 2. An overview of our proposed method

TOWARDS ENSURING SOFTWARE INTEROPERABILITY . . .

Figure 3. An example of architectural analysis: (a) Step1-A: visualization-based analysis and
(b) Step1-B: detailed inspection

types, compositions, and connections between
layers. Figure 3(a) shows an example visualiza-
tion by Netron [25], a visualization tool for DL
models. The example visualizes the architec-
ture of pre-conversion DL model implemented
in PyTorch (left) and that of its post-conversion
DL model implemented in Keras (right), re-
spectively. Comparing architectural character-
istics using the aforementioned conditions re-
veals that a “ZeroPadding2D” layer has been
added to the post-conversion model, which vi-
olates Condition#1. As mentioned earlier, af-
ter visualization-based analysis, a detailed in-
spection on each layer is required in order to
thoroughly examine the changes in architectural
variables.

– Step1-B. Detailed inspection verifies whether
any change has occurred in architectural vari-
ables of each layer (e.g., hyperparameters, di-
mensions, and bias values). Continuing from
the example of Figure 3(a), although a “Ze-
roPadding2D” layer has been added to the post-
conversion model, this can be considered a pa-
rameter option. Padding can be applied, es-
pecially in Keras, by incorporating a padding
layer in the model, which actually serves the

same operation as setting a parameter option for
padding in other DL frameworks. In this ex-
ample, we can confirm that interoperability be-
tween the two models has been ensured. If it
is confirmed that a post-conversion model pre-
served the architectural characteristics of a pre-
conversion model, then we can proceed to the
next step to perform the following verifications.
Otherwise, it is confirmed that their interoper-
ability has not been achieved.

3.2 Step2: Performance Analysis

In this step, by analyzing the inference per-
formance of the target models, their interoperabil-
ity is verified. Specifically, it is verified whether
the inference performance of the model on a test
dataset has been maintained in terms of accuracy.
By measuring the numerical differences in accu-
racy of two models, it can be determined whether
the inference performance has been preserved or
not. For example, in general, an accuracy is calcu-
lated as follows: (the number of true positives+the
number of true negatives)/(the total number of in-
ferences) [26]. For the same dataset, if the pre-
conversion model’s accuracy is 98.75% and the
post-conversion model’s accuracy is 98.11%, then

220 Youn Kyu Lee, Seong Hee Park, Min Young Lim, Soo-Hyun Lee, Jongwook Jeong

the two models are considered to provide different
inference performances, confirming that interoper-
ability has not been achieved. If it is confirmed
that a post-conversion model preserved the infer-
ence performance, then we can proceed to the next
step to perform the following verifications. Other-
wise, it is confirmed that their interoperability has
not been achieved.

3.3 Step3: Error Analysis

In this step, by analyzing the inference error
between the target models, their interoperability is
verified. Even if pre- and post-conversion DL mod-
els had produced different inference values, their
accuracies could be measured as equal according to
a decision threshold. A performance analysis of a
classification model identifies how accurately it pre-
dicts the class based on the decision threshold rather
than an inference value for each test data. Hence,
inference values are examined in this step for a de-
tailed analysis on the inference operations. Error
analysis can be conducted in two different ways,
mean absolute percentage error (MAPE) analysis
[27, 28] and error margin analysis [29].

– Step3-A. This step verifies the degree of infer-
ence error by measuring MAPE. In our method,
MAPE represents the difference ratio of nu-
merical values calculated from pre- and post-
conversion DL models. This step verifies the
degree of inference error by measuring MAPE,
which is a widely used metric for estimating er-
rors as a single numerical value [30, 31]. The
formula for calculating MAPE is as follows:

MAPE =
100%

n

n

∑
t=1

∣∣∣∣
M1t −M2t

M1t

∣∣∣∣ (1)

where, for each data t among n total test data,
M1t is an inference value of pre-conversion
model (=M1), M2t is an inference value of post-
conversion model (=M2).

After calculating MAPE, it is compared with a
threshold, which can be empirically determined.
If MAPE is greater than the threshold, we can
consider that the two models offer significantly
different inference values, confirming that inter-
operability has not been achieved. Note that
MAPE provides a numerical rationale of the

changes in a target model’s inference operations,
but in some cases, it provides undesirable re-
sults. For example, in the case of “divide by
zero” where M1t is 0, since calculating MAPE
is infeasible, we need to proceed to the next step
to perform further verification.

– Step3-B. This step verifies the range of infer-
ence errors by measuring error margins. In our
method, error margin represents the range of
differences in numerical values calculated from
pre- and post-conversion DL models. If errors
are observed within an acceptable margin, which
can be empirically determined, we can consider
that the two models offer interoperable inference
values.

Algorithm 1 iterates over each test data t in a
test dataset (=Testdata) and considers the error
margin between pre- and post-conversion mod-
els. Specifically, for each t, an error margin
(=errort) is estimated by calculating a difference
between an inference value of pre-conversion
model (=M1t) and that of post-conversion model
(=M2t). Algorithm 1 then identifies if errort is
within an acceptable margin (=p). If so, it stops
its processing while returning a fail. When it fin-
ishes iterating without failing, it returns a pass.
For example, if the acceptable margin of error
is defined as [0, 1e-05] and an error occurs at a
margin of [0, 1e-03], we can consider that the
error has occurred at a wider margin, confirm-
ing that interoperability has not been achieved.
If an error occurs only within [0, 1e-06], we can
consider that the error has occurred at an accept-
able margin, confirming that interoperability has

Algorithm 1: Error margin analysis
Input: Testdata
Let [0, p] be an acceptable margin
Let M1x be an inference value of

pre-conversion model for data x
Let M2x be an inference value of
post-conversion model for data x

foreach t ∈ Testdata do
errort = |M1t −M2t |
if errort > p then

return fail
end

end
return pass

221Youn Kyu Lee, Seong Hee Park, Min Young Lim, Soo-Hyun Lee, Jongwook Jeong

the two models are considered to provide different
inference performances, confirming that interoper-
ability has not been achieved. If it is confirmed
that a post-conversion model preserved the infer-
ence performance, then we can proceed to the next
step to perform the following verifications. Other-
wise, it is confirmed that their interoperability has
not been achieved.

3.3 Step3: Error Analysis

In this step, by analyzing the inference error
between the target models, their interoperability is
verified. Even if pre- and post-conversion DL mod-
els had produced different inference values, their
accuracies could be measured as equal according to
a decision threshold. A performance analysis of a
classification model identifies how accurately it pre-
dicts the class based on the decision threshold rather
than an inference value for each test data. Hence,
inference values are examined in this step for a de-
tailed analysis on the inference operations. Error
analysis can be conducted in two different ways,
mean absolute percentage error (MAPE) analysis
[27, 28] and error margin analysis [29].

– Step3-A. This step verifies the degree of infer-
ence error by measuring MAPE. In our method,
MAPE represents the difference ratio of nu-
merical values calculated from pre- and post-
conversion DL models. This step verifies the
degree of inference error by measuring MAPE,
which is a widely used metric for estimating er-
rors as a single numerical value [30, 31]. The
formula for calculating MAPE is as follows:

MAPE =
100%

n

n

∑
t=1

∣∣∣∣
M1t −M2t

M1t

∣∣∣∣ (1)

where, for each data t among n total test data,
M1t is an inference value of pre-conversion
model (=M1), M2t is an inference value of post-
conversion model (=M2).

After calculating MAPE, it is compared with a
threshold, which can be empirically determined.
If MAPE is greater than the threshold, we can
consider that the two models offer significantly
different inference values, confirming that inter-
operability has not been achieved. Note that
MAPE provides a numerical rationale of the

changes in a target model’s inference operations,
but in some cases, it provides undesirable re-
sults. For example, in the case of “divide by
zero” where M1t is 0, since calculating MAPE
is infeasible, we need to proceed to the next step
to perform further verification.

– Step3-B. This step verifies the range of infer-
ence errors by measuring error margins. In our
method, error margin represents the range of
differences in numerical values calculated from
pre- and post-conversion DL models. If errors
are observed within an acceptable margin, which
can be empirically determined, we can consider
that the two models offer interoperable inference
values.

Algorithm 1 iterates over each test data t in a
test dataset (=Testdata) and considers the error
margin between pre- and post-conversion mod-
els. Specifically, for each t, an error margin
(=errort) is estimated by calculating a difference
between an inference value of pre-conversion
model (=M1t) and that of post-conversion model
(=M2t). Algorithm 1 then identifies if errort is
within an acceptable margin (=p). If so, it stops
its processing while returning a fail. When it fin-
ishes iterating without failing, it returns a pass.
For example, if the acceptable margin of error
is defined as [0, 1e-05] and an error occurs at a
margin of [0, 1e-03], we can consider that the
error has occurred at a wider margin, confirm-
ing that interoperability has not been achieved.
If an error occurs only within [0, 1e-06], we can
consider that the error has occurred at an accept-
able margin, confirming that interoperability has

TOWARDS ENSURING SOFTWARE INTEROPERABILITY . . .

been achieved. If it is confirmed that the post-
conversion model preserved the inference oper-
ations, then we can proceed to the next step to
perform the following verifications. Otherwise,
it is confirmed that their interoperability has not
been achieved.

3.4 Step4: Time Analysis

In this step, by analyzing the inference time
of the target models, their interoperability is veri-
fied. Even if pre- and post-conversion DL models
had produced the same inference values, the infer-
ence time may not have been preserved. Inference
time is a key metric of a DL model’s performance.
When inference time noticeably increases after con-
version, it is typically considered that interoperabil-
ity has not been achieved. The formula for calculat-
ing time difference (=TimeDi f f) is as follows:

TimeDi f f =
1
n

n

∑
t=1

(T2t −T1t) (2)

where, for each data t among n total test data,
T1t is an inference time of pre-conversion model
(=M1), T2t is an inference time of post-conversion
model (=M2).

After calculating TimeDiff, it is compared with
a threshold, which can be empirically determined.
If TimeDiff is greater than the threshold, we can
consider that the two models require significantly
different inference times, confirming that interoper-
ability has not been achieved. If it is confirmed that
the post-conversion model preserved the inference
time, then we can finalize the verification process.

By passing all the validation and verification
steps, the target DL models are confirmed to have
achieved interoperability in terms of architecture,
inference performance, operations, and time.

4 Case Study and Results

We conducted case studies to evaluate the effec-
tiveness and applicability of our proposed method.
We designed four different cases each of which
represents a model conversion between different
DL frameworks. Each case demonstrates how our
method can be utilized to verify interoperability be-
tween pre- and post-conversion DL models. Our

case studies mainly focused on the conversion sce-
narios of one model to various frameworks. To en-
sure representativeness, we selected a representa-
tive DL model and DL frameworks.

As a target model, we selected VGG16 [32],
a popular DL model architecture for image clas-
sification. To train and test the model, we used
two different datasets: (1) MNIST [33], a dataset
consisting of handwritten images from 0 to 9; and
(2) ImageNet [34], a large image dataset designed
for visual object recognition. Moreover, we se-
lected three representative DL frameworks, Py-
Torch, Keras, and TensorFlow. As DL conversion
tools, we employed ONNX, NNEF, MMdnn, and
pytorch2keras. As shown in Table 1, we designed
four different cases of DL conversion: Case#1–
a PyTorch model to a Keras model using ONNX,
Case#2–a PyTorch model to a Keras model using
pytorch2keras, Case#3–a PyTorch model to a Ten-
sorFlow model using NNEF, and Case#4–a Keras
model to a PyTorch model using MMdnn.

Note that, for Case#3, we first converted a Py-
Torch model to ONNX format, then its result to
NNEF format, and finally its results to a Tensor-
Flow model because NNEF does not support Py-
Torch.

With the selected datasets (Case#1 to #3:
MNIST and Case#4: ImageNet), we trained four
VGG16 models using each source DL framework
(i.e., PyTorch and Keras), and then converted each
model to each destination DL framework (i.e.,
Keras, TensorFlow, and PyTorch) using different
DL conversion tools (i.e., ONNX, NNEF, MMdnn,
and pytorch2keras). Note that, in Case#4, since
MMdnn is basically compatible with the ImageNet
dataset, we used it instead of MNIST. For each
conversion (i.e., pre- and post-conversion DL mod-
els), we verified their interoperability using our pro-
posed method. All experiments were conducted us-
ing Jupyter Notebook with the following settings:
Python 3.7 and 3.8, ONNX 1.8.1 and 1.9.0, Tensor-
Flow 1.15.2, Keras 2.2.4, PyTorch 1.5.1, and one
GPU (NVIDIA Tesla T4).

Case#1: To perform architectural analysis, we
first visualized the architecture of target DL mod-
els using Netron (Step1-A). The visualized archi-
tecture, as shown in Figure 3(a), illustrated that
the pre- and post-conversion models have the same
layer types, connections, and configurations, except

222 Youn Kyu Lee, Seong Hee Park, Min Young Lim, Soo-Hyun Lee, Jongwook Jeong

Table 1. DL conversion cases in our case studies

Case Source Framework
(Pre-Conversion)

Destination Framework
(Post-Conversion) DL Conversion tool Dataset

Case#1 PyTorch Keras ONNX MNIST
Case#2 PyTorch Keras pytorch2keras MNIST
Case#3 PyTorch TensorFlow NNEF MNIST
Case#4 Keras PyTorch MMdnn ImageNet

Table 2. The experimental results of case studies

Step1

(Architectural Analysis)

Step2

(Performance Analysis)

Step3

(Error Analysis*)

Step4

(Time Analysis**)

Viz.

Analysis

Detailed

Inspection
Interop.

Accuracy

(Pre-conv.)

Accuracy

(Post-conv.)
Interop. MAPE

Error

Margin
Interop.

Time

Difference
Interop.

Case#1 Pass Pass Pass 99.63% 99.63% Pass 2e-04 [0,1e-06] Pass -0.045 sec. Pass

Case#2 Pass Pass Pass 99.41% 99.41% Pass 1e-04 [0,1e-06] Pass -0.277 sec. Pass

Case#3 Pass Fail Fail 99.42% Error Fail Error Error Fail Error Fail

Case#4 Fail Fail Fail 0.40% 0.18% Fail 7e-01 [0,1e-02] Fail +0.303 sec. Fail

* MAPE threshold: 0.1, Acceptable margin: [0, 1e-05]
** Time difference threshold: <+0.2sec.

for “ZeroPadding2D” layer. As mentioned in Sec-
tion 3.1, since “ZeroPadding2D” layer has been
added due to different characteristics between the
DL frameworks, the model architecture is consid-
ered to have been maintained in this case. Further-
more, as shown in Figure 3(b), the detailed inspec-
tion demonstrated that no changes had occurred in
the variables of each layer (Step1-B). After pass-
ing Step1, we compared the accuracy of the mod-
els using MNIST test dataset (Step2). The results
confirmed that the accuracies of the pre- and post-
conversion models were identical (=99.63%), as
shown in Table 2.

The threshold for MAPE was set at 0.1 and the
acceptable error margin was set at [0, 1e-05], both
determined empirically. The time difference thresh-
old was set at 0.2 seconds because this is the point
at which users begin to notice a slowdown in mo-
bile application responsiveness [35]. The results of
case studies are summarized in Table 2.

After passing Step2, we measured MAPE
of target models (Step3-A). The MAPE value
(=0.00024) was smaller than the threshold (=0.1),
confirming that interoperability had been achieved.

In Step3-B, we measured the inference error of tar-
get models. As shown in Figure 4, there were
37 errors in [0, 1e-06], and none in [0, 1e-05],
which was acceptable (acceptable error margin=[0,
1e-05]). Finally, in Step4, we calculated the time
difference between the target models. The time dif-
ference value (-0.045 seconds) was smaller than the
threshold (<0.2 seconds). Consequently, by pass-
ing the verifications at all steps, Case#1’s conver-
sion was confirmed to have ensured interoperabil-
ity.

Case#2: We first verified that the target models’
layer types, connections, and configurations were
preserved by visually inspecting their architectures
(Step1-A). The detailed inspection also verified
that no changes had occurred in the variables of
each layer (Step1-B). We then compared the ac-
curacy of the models using MNIST test dataset
(Step2). The results confirmed that the accura-
cies of the pre- and post-conversion models were
identical (=99.41%), as shown in Table 2. Af-
ter passing Step2, we measured MAPE of target
models (Step3-A). The MAPE value (=0.00011)
was smaller than the threshold (=0.1), confirming

223Youn Kyu Lee, Seong Hee Park, Min Young Lim, Soo-Hyun Lee, Jongwook Jeong

Table 1. DL conversion cases in our case studies

Case Source Framework
(Pre-Conversion)

Destination Framework
(Post-Conversion) DL Conversion tool Dataset

Case#1 PyTorch Keras ONNX MNIST
Case#2 PyTorch Keras pytorch2keras MNIST
Case#3 PyTorch TensorFlow NNEF MNIST
Case#4 Keras PyTorch MMdnn ImageNet

Table 2. The experimental results of case studies

Step1

(Architectural Analysis)

Step2

(Performance Analysis)

Step3

(Error Analysis*)

Step4

(Time Analysis**)

Viz.

Analysis

Detailed

Inspection
Interop.

Accuracy

(Pre-conv.)

Accuracy

(Post-conv.)
Interop. MAPE

Error

Margin
Interop.

Time

Difference
Interop.

Case#1 Pass Pass Pass 99.63% 99.63% Pass 2e-04 [0,1e-06] Pass -0.045 sec. Pass

Case#2 Pass Pass Pass 99.41% 99.41% Pass 1e-04 [0,1e-06] Pass -0.277 sec. Pass

Case#3 Pass Fail Fail 99.42% Error Fail Error Error Fail Error Fail

Case#4 Fail Fail Fail 0.40% 0.18% Fail 7e-01 [0,1e-02] Fail +0.303 sec. Fail

* MAPE threshold: 0.1, Acceptable margin: [0, 1e-05]
** Time difference threshold: <+0.2sec.

for “ZeroPadding2D” layer. As mentioned in Sec-
tion 3.1, since “ZeroPadding2D” layer has been
added due to different characteristics between the
DL frameworks, the model architecture is consid-
ered to have been maintained in this case. Further-
more, as shown in Figure 3(b), the detailed inspec-
tion demonstrated that no changes had occurred in
the variables of each layer (Step1-B). After pass-
ing Step1, we compared the accuracy of the mod-
els using MNIST test dataset (Step2). The results
confirmed that the accuracies of the pre- and post-
conversion models were identical (=99.63%), as
shown in Table 2.

The threshold for MAPE was set at 0.1 and the
acceptable error margin was set at [0, 1e-05], both
determined empirically. The time difference thresh-
old was set at 0.2 seconds because this is the point
at which users begin to notice a slowdown in mo-
bile application responsiveness [35]. The results of
case studies are summarized in Table 2.

After passing Step2, we measured MAPE
of target models (Step3-A). The MAPE value
(=0.00024) was smaller than the threshold (=0.1),
confirming that interoperability had been achieved.

In Step3-B, we measured the inference error of tar-
get models. As shown in Figure 4, there were
37 errors in [0, 1e-06], and none in [0, 1e-05],
which was acceptable (acceptable error margin=[0,
1e-05]). Finally, in Step4, we calculated the time
difference between the target models. The time dif-
ference value (-0.045 seconds) was smaller than the
threshold (<0.2 seconds). Consequently, by pass-
ing the verifications at all steps, Case#1’s conver-
sion was confirmed to have ensured interoperabil-
ity.

Case#2: We first verified that the target models’
layer types, connections, and configurations were
preserved by visually inspecting their architectures
(Step1-A). The detailed inspection also verified
that no changes had occurred in the variables of
each layer (Step1-B). We then compared the ac-
curacy of the models using MNIST test dataset
(Step2). The results confirmed that the accura-
cies of the pre- and post-conversion models were
identical (=99.41%), as shown in Table 2. Af-
ter passing Step2, we measured MAPE of target
models (Step3-A). The MAPE value (=0.00011)
was smaller than the threshold (=0.1), confirming

TOWARDS ENSURING SOFTWARE INTEROPERABILITY . . .

Figure 4. Result of Case#1’s error margin analysis: (a) Inference errors in [0, 1e-05] and (b) Inference
errors in [0, 1e-06] (Step3)

Figure 5. Result of Case#2’s error margin analysis: (a) Inference errors in [0, 1e-05] and (b) Inference
errors in [0, 1e-06] (Step3)

that interoperability had been achieved. Finally, in
Step3-B, we measured the inference error of target
models. As shown in Figure 5, there were 50 errors
in [0, 1e-06], and none in [0, 1e-05], which was ac-
ceptable (acceptable error margin=[0, 1e-05]). Fi-
nally, in Step4, we calculated the time difference
between the target models. The time difference
value (-0.277 seconds) was smaller than the thresh-
old (<0.2 seconds). Consequently, by passing the
verifications at all steps, Case#2’s conversion was
confirmed to have ensured interoperability.

Case#3: To perform architectural analysis,
we first visualized the architecture of target DL
models (Step1-A). The visualized architecture,
as shown in Figure 6, illustrated that the post-
conversion model contains additional layer types
and connections while maintaining the order of
layers from the pre-conversion model: Conv2d-
LeakyReLU-Conv2d-LeakyReLU-MaxPool2d. Al-
though we subsequently performed a detailed in-
spection (Step1-B), a conversion error in the post-
conversion model file precluded its proper execu-
tion. Due to the same error, this case could not
pass the subsequent verifications either (Step2 to

Step4). Consequently, by failing the verifications
at all steps, Case#3’s conversion was confirmed to
not have ensured interoperability.

Case#4: To perform architectural analysis, we
first visualized the architecture of target models
(Step1-A). As shown in Figure 7, while the num-
ber of layers was maintained, all connections be-
tween layers were removed in the post-conversion
model’s architecture. Moreover, in the post-
conversion model, all layers other than Conv2D lay-
ers (i.e., ReLU and MaxPooling2D) have been re-
moved. The result confirms that Case#4 did not
achieve interoperability. To confirm the validity of
our proposed process, we additionally proceeded
with the remaining steps. In Step2, we observed
the difference in accuracy between target mod-
els (pre-conversion: 0.40% and post-conversion:
0.18%), indicating that inference performance was
not preserved. In Step3-A, the measured MAPE
was 0.74, which exceeded the threshold (=0.1). In
Step3-B, we confirmed that two errors occurred in
the range of [0, 1e-02], which was unacceptable. In
Step4, we calculated the time difference between
the target models. The time difference value (0.303

224 Youn Kyu Lee, Seong Hee Park, Min Young Lim, Soo-Hyun Lee, Jongwook Jeong

Figure 6. Excerpt from Case#3’s architectural analysis

Figure 7. Excerpt from Case#4’s architectural analysis

225Youn Kyu Lee, Seong Hee Park, Min Young Lim, Soo-Hyun Lee, Jongwook Jeong

Figure 6. Excerpt from Case#3’s architectural analysis

Figure 7. Excerpt from Case#4’s architectural analysis

TOWARDS ENSURING SOFTWARE INTEROPERABILITY . . .

seconds) was greater than the threshold (<0.2 sec-
onds). Consequently, by failing the verifications at
all steps, Case#4’s conversion was confirmed to not
have ensured interoperability.

Through four different cases, we checked
whether our proposed process was valid in verify-
ing interoperability between DL models. Both in
Case#1 and Case#2, we confirmed that interoper-
ability was achieved between the target DL mod-
els because no issues were identified at any step
of our method. On the other hand, in both Case#3
and Case#4, we confirmed that interoperability was
not achieved between the target DL models be-
cause interoperability issues were identified at ev-
ery step of our method. For all cases, our proposed
method successfully discovered the interoperability
issues that have been reported in DL model conver-
sion [23, 22] (e.g., inference performance degrada-
tion or model architecture changes) via its multi-
perspective validation and verification.

5 Threats to validity

In our case studies, to address any resulting
bias, we carefully selected DL models, DL frame-
works, datasets, and DL conversion tools by focus-
ing on their popularity and generality. As a tar-
get DL model architecture, VGG16 was selected
because it has a simplified architecture with only
16 elemental layers, which enables a precise com-
parison between the pre- and post-conversion DL
models. As target DL frameworks, out of the top
10 most popular DL frameworks in 2021 [36, 37],
the top three were chosen: PyTorch, TensorFlow,
and Keras. Moreover, to enable reproducible anal-
ysis, MNIST, and ImageNet, representative im-
age classification datasets, were selected as target
datasets because they required minimal preprocess-
ing for training and testing. For target DL conver-
sion tools, among the open-source tools published
on GitHub, we selected four tools based on the
rankings (for representativeness) and the number of
commits and contributors (for stability): ONNX,
NNEF, MMdnn, and pytorch2keras. In addition, we
plan to conduct additional experiments by securing
more conversion cases.

Especially in Step1, due to the qualitative as-
pect of architectural analysis, its results may be dif-
ferent depending on an engineer’s expertise or the

complexity of model architecture. For example, a
non-expert engineer is more likely to make errors in
examining complex model architectures. To mini-
mize this, in our case studies, two expert engineers
(with more than three years of experience in devel-
oping DL software) additionally performed a peer-
review on our analysis results.

6 Conclusion

DL model conversion has enabled engineers to
deploy DL models in various DL frameworks, but
interoperability between the models may not be
guaranteed in many cases due to their unreliable
conversions. In this paper, we proposed a new
method for ensuring interoperability between DL
models based on the V&V approach. Our method
validates and verifies the interoperability between
target DL models by conducting systematic analy-
ses from multiple perspectives: architectural analy-
sis, performance analysis, error analysis, and time
analysis. We conducted case studies on four dif-
ferent scenarios of DL model conversion, and con-
firmed that our method successfully discovered the
interoperability issues that have been reported. As
the versions, types, and environments of DL frame-
works diversify, reliable DL model conversion be-
comes increasingly important. By enabling system-
atic validation and verification of DL conversion,
our proposed solution can significantly contribute
to ensuring interoperability between DL models.

As a future work, we plan to develop an auto-
mated method for architectural analysis. We will
develop a mechanism that automatically compares
the layers and parameters in target DL models and
quantitatively measures the differences. Moreover,
by examining additional conversion cases, we plan
to develop a mechanism that automatically adapts
DL models to be deployed in different environ-
ments.

Acknowledgement

This work was supported in part by the National
Research Foundation of Korea (NRF) grant funded
by the Korea government (MSIT) (No. RS-2022-
00165648); in part by BrainLink program funded
by the Ministry of Science and ICT through the
National Research Foundation of Korea (RS-2023-

226 Youn Kyu Lee, Seong Hee Park, Min Young Lim, Soo-Hyun Lee, Jongwook Jeong

00237308); and in part by Institute of Information
& communications Technology Planning & Evalu-
ation (IITP) grant funded by the Korea government
(MSIT) (No. 2021-0-00766, Development of Inte-
grated Development Framework that supports Au-
tomatic Neural Network Generation and Deploy-
ment optimized for Runtime Environment).

References
[1] G. Nguyen, S. Dlugolinsky, M. Bobák, V. Tran, Á.

López Garcı́a, I. Heredia, P. Malı́k, and L. Hluchý,
Machine learning and deep learning frameworks
and libraries for large-scale data mining: a survey,
Artificial Intelligence Review, 52, 2019, pages 77-
124.

[2] S. Pouyanfar, S. Sadiq, Y. Yan, H. Tian, Y. Tao,
M.P. Reyes, M.L. Shyu, S.C. Chen, S.S. and Iyen-
gar, A survey on deep learning: Algorithms, tech-
niques, and applications, ACM Computing Sur-
veys (CSUR), 51(5), 2018, pages 1-36.

[3] M. Abadi, A. Agarwal, P. Barham, E. Brevdo,
Z. Chen, C. Citro, G.S. Corrado, A. Davis, J.
Dean, M. Devin, and S. Ghemawat, Tensorflow:
Large-scale machine learning on heterogeneous
distributed systems, 2016, arXiv:1603.04467.

[4] F. Chollet, Keras: The python deep learning li-
brary, 2015, https://github.com/fchollet/keras.

[5] A. Paszke, S. Gross, F. Massa, A. Lerer, J. Brad-
bury, G. Chanan, T. Killeen, Z. Lin, N. Gimelshein,
L. Antiga, and A. Desmaison, Pytorch: An im-
perative style, high-performance deep learning li-
brary, Advances in neural information processing
systems, 32, 2019.

[6] Y. Cheng, D. Wang, P. Zhou, and T. Zhang, A
survey of model compression and acceleration for
deep neural networks, 2017, arXiv:1710.09282.

[7] T.G. Dietterich, Ensemble learning, In: The hand-
book of brain theory and neural networks, The MIT
Press, 2002, pages 110-125.

[8] J. Gao, P. Li, Z. Chen, and J. Zhang, A survey on
deep learning for multimodal data fusion, Neural
Computation, 32(5), 2020, pages 829-864.

[9] Facebook and Microsoft, ONNX:
Open Neural Network Exchange, 2017,
https://github.com/onnx/onnx.

[10] The Khronos Group, Neural Net-
work Exchange Format (NNEF), 2016,
https://www.khronos.org/nnef.

[11] Y. Liu, C. Chen, R. Zhang, T. Qin, X. Ji, H. Lin,
and M. Yang, Enhancing the interoperability be-
tween deep learning frameworks by model conver-
sion, In Proceedings of the 28th ACM Joint Meet-
ing on European Software Engineering Conference
and Symposium on the Foundations of Software
Engineering, 2020, pages 1320-1330.

[12] Hahnyuan, Neural network tools: Converter and
analyzer, 2017, https://github.com/hahnyuan/nn
tools.

[13] Gmalivenko, pytorch2keras: Pytorch to
keras model convertor, 2019, https://
github.com/gmalivenko/pytorch2keras.

[14] Z. Chen, Y. Cao, Y. Liu, H. Wang, T. Xie, and X.
Liu, A comprehensive study on challenges in de-
ploying deep learning based software, In Proceed-
ings of the 28th ACM Joint Meeting on European
Software Engineering Conference and Symposium
on the Foundations of Software Engineering, 2020,
pages 750-762.

[15] M. Openja, A. Nikanjam, A.H. Yahmed, F.
Khomh, and Z.M.J. Jiang, An empirical study of
challenges in converting deep learning models, In
2022 IEEE International Conference on Software
Maintenance and Evolution (ICSME), 2022, pages
13-23.

[16] H. Pham, Software reliability, Springer Science&
Business Media, 2000.

[17] J. Schumann, P. Gupta, and S. Nelson, On verifi-
cation & validation of neural network based con-
trollers, EANN’03, 2003.

[18] Facebook, CAFFE2, 2017, https://caffe2.ai/.

[19] Apache Software Foundation, A flexible and
efficient library for Deep Learning, 2017,
https://mxnet.apache.org/versions/1.9.1/.

[20] Y. Jia, E. Shelhamer, F. Donahue, S. Karayev, K.
Long, R. Girshick, S. Guadarrama, and T. Darrell,
Caffe: Convolutional architecture for fast feature
embedding, In Proceedings of the 22nd ACM in-
ternational conference on Multimedia, 2014, pages
675-678.

[21] Woodsgao, pytorch2caffe, 2010, https://
github.com/woodsgao/pytorch2caffe.

[22] Darshan, Torch to ONNX conversion going wrong,
2021, https://discuss.pytorch.org/t/torch-to-onnx-
conversion-going-wrong/121596.

[23] ys.yusaito, Inference result is different be-
tween Pytorch and ONNX model, 2022,
https://discuss.pytorch.org/t/inference-result-
is-different-between-pytorch-and-onnx-
model/147228/1.

227Youn Kyu Lee, Seong Hee Park, Min Young Lim, Soo-Hyun Lee, Jongwook Jeong

00237308); and in part by Institute of Information
& communications Technology Planning & Evalu-
ation (IITP) grant funded by the Korea government
(MSIT) (No. 2021-0-00766, Development of Inte-
grated Development Framework that supports Au-
tomatic Neural Network Generation and Deploy-
ment optimized for Runtime Environment).

References
[1] G. Nguyen, S. Dlugolinsky, M. Bobák, V. Tran, Á.

López Garcı́a, I. Heredia, P. Malı́k, and L. Hluchý,
Machine learning and deep learning frameworks
and libraries for large-scale data mining: a survey,
Artificial Intelligence Review, 52, 2019, pages 77-
124.

[2] S. Pouyanfar, S. Sadiq, Y. Yan, H. Tian, Y. Tao,
M.P. Reyes, M.L. Shyu, S.C. Chen, S.S. and Iyen-
gar, A survey on deep learning: Algorithms, tech-
niques, and applications, ACM Computing Sur-
veys (CSUR), 51(5), 2018, pages 1-36.

[3] M. Abadi, A. Agarwal, P. Barham, E. Brevdo,
Z. Chen, C. Citro, G.S. Corrado, A. Davis, J.
Dean, M. Devin, and S. Ghemawat, Tensorflow:
Large-scale machine learning on heterogeneous
distributed systems, 2016, arXiv:1603.04467.

[4] F. Chollet, Keras: The python deep learning li-
brary, 2015, https://github.com/fchollet/keras.

[5] A. Paszke, S. Gross, F. Massa, A. Lerer, J. Brad-
bury, G. Chanan, T. Killeen, Z. Lin, N. Gimelshein,
L. Antiga, and A. Desmaison, Pytorch: An im-
perative style, high-performance deep learning li-
brary, Advances in neural information processing
systems, 32, 2019.

[6] Y. Cheng, D. Wang, P. Zhou, and T. Zhang, A
survey of model compression and acceleration for
deep neural networks, 2017, arXiv:1710.09282.

[7] T.G. Dietterich, Ensemble learning, In: The hand-
book of brain theory and neural networks, The MIT
Press, 2002, pages 110-125.

[8] J. Gao, P. Li, Z. Chen, and J. Zhang, A survey on
deep learning for multimodal data fusion, Neural
Computation, 32(5), 2020, pages 829-864.

[9] Facebook and Microsoft, ONNX:
Open Neural Network Exchange, 2017,
https://github.com/onnx/onnx.

[10] The Khronos Group, Neural Net-
work Exchange Format (NNEF), 2016,
https://www.khronos.org/nnef.

[11] Y. Liu, C. Chen, R. Zhang, T. Qin, X. Ji, H. Lin,
and M. Yang, Enhancing the interoperability be-
tween deep learning frameworks by model conver-
sion, In Proceedings of the 28th ACM Joint Meet-
ing on European Software Engineering Conference
and Symposium on the Foundations of Software
Engineering, 2020, pages 1320-1330.

[12] Hahnyuan, Neural network tools: Converter and
analyzer, 2017, https://github.com/hahnyuan/nn
tools.

[13] Gmalivenko, pytorch2keras: Pytorch to
keras model convertor, 2019, https://
github.com/gmalivenko/pytorch2keras.

[14] Z. Chen, Y. Cao, Y. Liu, H. Wang, T. Xie, and X.
Liu, A comprehensive study on challenges in de-
ploying deep learning based software, In Proceed-
ings of the 28th ACM Joint Meeting on European
Software Engineering Conference and Symposium
on the Foundations of Software Engineering, 2020,
pages 750-762.

[15] M. Openja, A. Nikanjam, A.H. Yahmed, F.
Khomh, and Z.M.J. Jiang, An empirical study of
challenges in converting deep learning models, In
2022 IEEE International Conference on Software
Maintenance and Evolution (ICSME), 2022, pages
13-23.

[16] H. Pham, Software reliability, Springer Science&
Business Media, 2000.

[17] J. Schumann, P. Gupta, and S. Nelson, On verifi-
cation & validation of neural network based con-
trollers, EANN’03, 2003.

[18] Facebook, CAFFE2, 2017, https://caffe2.ai/.

[19] Apache Software Foundation, A flexible and
efficient library for Deep Learning, 2017,
https://mxnet.apache.org/versions/1.9.1/.

[20] Y. Jia, E. Shelhamer, F. Donahue, S. Karayev, K.
Long, R. Girshick, S. Guadarrama, and T. Darrell,
Caffe: Convolutional architecture for fast feature
embedding, In Proceedings of the 22nd ACM in-
ternational conference on Multimedia, 2014, pages
675-678.

[21] Woodsgao, pytorch2caffe, 2010, https://
github.com/woodsgao/pytorch2caffe.

[22] Darshan, Torch to ONNX conversion going wrong,
2021, https://discuss.pytorch.org/t/torch-to-onnx-
conversion-going-wrong/121596.

[23] ys.yusaito, Inference result is different be-
tween Pytorch and ONNX model, 2022,
https://discuss.pytorch.org/t/inference-result-
is-different-between-pytorch-and-onnx-
model/147228/1.

TOWARDS ENSURING SOFTWARE INTEROPERABILITY . . .

[24] J. Schumann, and K. Goseva-Popstojanova, Ver-
ification and validation approaches for model-
based software engineering, In 2019 ACM/IEEE
22nd International Conference on Model Driven
Engineering Languages and Systems Companion
(MODELS-C), 2019, pages 514-518.

[25] L. Roeder, Netron, 2020, https://netron.app/.

[26] T. Fawcett, An introduction to ROC analysis. Pat-
tern recognition letters, 27(8), 2006, pages 861-
874.

[27] Y. Jiang, Prediction of monthly mean daily diffuse
solar radiation using artificial neural networks and
comparison with other empirical models, Energy
policy, 36(10), 2008, pages 3833-3837.

[28] S. Zeiml, U. Seiler, K. Altendorfer, and T. Felber-
bauer, Simulation evaluation of automated forecast
error correction based on mean percentage error, In
2020 Winter Simulation Conference (WSC), 2020,
pages 1572-1583.

[29] M. Nejadgholi, and J. Yang, A study of oracle
approximations in testing deep learning libraries,
In 2019 34th IEEE/ACM International Conference
on Automated Software Engineering (ASE), 2019,
pages 785-796.

[30] M.V. Shcherbakov, A. Brebels, N.L.
Shcherbakova, A.P. Tyukov, T.A. Janovsky,
and V.A.E. Kamaev, A survey of forecast error
measures, World applied sciences journal, 24(24),
2013, pages 171-176.

[31] H. Li, W. Ma, Y. Lian, and X. Wang, Estimating
daily global solar radiation by day of year in China,
Applied Energy, 87(10), 2010, pages 3011-3017.

[32] K. Simonyan, and A. Zisserman, Very deep con-
volutional networks for large-scale image recogni-
tion, 2014, arXiv:1409.1556.

[33] L. Deng, The mnist database of handwritten digit
images for machine learning research [best of the
web], IEEE signal processing magazine, 29(6),
2012, pages 141-142.

[34] A. Krizhevsky, I. Sutskever, and G.E. Hinton, Im-
agenet classification with deep convolutional neu-
ral networks, Communications of the ACM, 60(6),
2017, pages 84-90.

[35] Android Google, Keeping your
app responsive, 2017, https://
developer.android.com/training/articles/perf-
anr.html.

[36] G. Kechit, Top 10 deep learning frame-
works in 2022 you can’t ignore, 2022,
https://www.upgrad.com/blog/top-deep-learning-
frameworks.

[37] O.G. Yalçın, Top 5 Deep Learning Frame-
works to Watch in 2021 and Why TensorFlow,
2021, https://towardsdatascience.com/top-5-deep-
learning-frameworks-to-watch-in-2021-and-why-
tensorflow-98d8d6667351.

Youn Kyu Lee is currently an As-
sistant Professor in the Department
of Computer Engineering at Hongik
University, Seoul, Korea. He received
the B.S. and M.S. degrees in computer
science and engineering from Ko-
rea University, Seoul, Korea, in 2010
and 2012, respectively; and the Ph.D.
degree in computer science from the

University of Southern California (USC), Los Angeles, CA,
USA, in 2017. Before joining Hongik University, he was with
Samsung Advanced Institute of Technology (Suwon, Korea,
2018-2020), and Seoul Women’s University (Seoul, Korea,
2020-2021). He was a recipient of Viterbi Graduate Fellow-
ship with his Ph.D. admission from USC (2012), IEEE/ACM
International Conference on Automated Software Engineer-
ing (ASE) Best Tool Paper Award (2018) and IEEE ICTC Best
Paper Award (2022).
https://orcid.org/0000-0002-4569-2640

Seong Hee Park is currently pursuing
the M.S. degree in Computer Engineer-
ing at Hongik University, Seoul, Re-
public of Korea. She received the B.S.
degree in information security at Seoul
Women’s University, Seoul, Republic
of Korea. Her research focuses include
deep learning algorithms and their ap-
plications to information security.

https://orcid.org/0000-0002-6088-0658

Min Young Lim is currently pursu-
ing the M.S. degree in Computer En-
gineering at Hongik University, Seoul,
Republic of Korea. She received the
B.S. degree in information security at
Seoul Women’s University, Seoul, Re-
public of Korea. Her research focuses
include deep learning algorithms and
their applications to AI security. She

was a recipient of IEEE ICTC Best Paper Award (2022).
https://orcid.org/0000-0001-8016-5945

228 Youn Kyu Lee, Seong Hee Park, Min Young Lim, Soo-Hyun Lee, Jongwook Jeong

Soo-Hyun Lee is currently pursuing
the M.S. degree in Computer Engi-
neering at Hongik University, Seoul,
Republic of Korea. She received the
B.S. degree in information security at
Seoul Women’s University, Seoul, Re-
public of Korea. Her research focuses
include deep learning algorithms and
information security.
https://orcid.org/0000-0001-6696-0387

Jongwook Jeong is currently an As-
sistant Professor at the Department
of Computer Science and Artificial
Intelligence in Jeonbuk National Uni-
versity, Jeonju, Korea. He received his
Ph.D. in Computer Engineering from
Korea University, Seoul, Korea. His
current research interests include soft-
ware usability, software testing and
user requirements.
https://orcid.org/0000-0002-3307-0940

