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Abstract. Our aim is to present a solution to a general linear-quadratic (LQ) problem as
well as to a Kalman-Yacubovich-Popov (KYP) problem for infinite-dimensional systems with
bounded operators. The results are then applied, via the reciprocal system approach, to the
question of solvability of some Lur’e resolving equations arising in the stability theory of
infinite-dimensional systems in factor form with unbounded control and observation operators.
To be more precise the Lur’e resolving equations determine a Lyapunov functional candidate
for some closed-loop feedback systems on the base of some properties of an uncontrolled
(open-loop) system. Our results are illustrated in details by an example of a temperature of
a rod stabilization automatic control system.
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1. INTRODUCTION

Consider a linear matrix control system ẋ(t) = Ax(t) + Bu(t), A ∈ L(Rn), B ∈
L(Rr,Rn), x(0) = x0 with a nonlinear feedback u = −F (x), where F : Rn −→ Rr
is a locally Lipschitz mapping, F (0) = 0. The following construction of a Lyapunov
functional for the closed–loop Lur’e control system ẋ(t) = Ax(t)−BF [x(t)] is known.

Assume that (i) there exists Q ∈ L(Rr,Rn) such that QF is a gradient-type
(potential) operator, i.e., there exists a functional Φ such that ∇Φ(x) = QF (x). Then,
under the normalizing condition Φ(0) = 0; Φ can be recovered from QF using

Φ(x) =
1∫

0

xTQF (sx)ds =︸︷︷︸
z=sx

x∫

0

dzTQF (z).
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Let (ii) there exist matrices M = MT ∈ L(Rn), L ∈ L(Rr,Rn) and N = NT ∈ L(Rr)
such that [

x
F (x)

]T [ −M L
LT −N

] [
x

F (x)

]
≥ 0, x ∈ Rn.

Finally assume that (iii) the Lur’e system of resolving equations




ATH +HA−M = −GGT ,
−HB + 1

2A
TQ+ L = −GV,

N + 1
2(QTB +BTQ) = V TV

(1.1)

has a solution (H,G, V ), H = HT ∈ L(Rn), G ∈ L(Rr,Rn), V ∈ L(Rr). Then

xTHx+
x∫

0

dzTQF (z)

is a Lyapunov functional for the closed-loop system.
It was proved in [18] that if the pair (A,B) is controllable then a necessary and

sufficient condition for solvability of (1.1) is

Π(jω) :=N + LT (jωI −A)−1B +
[
LT (jωI −A)−1B

]∗

+ jω

2 QT (jωI −A)−1B +
[
jω

2 QT (jωI −A)−1B

]∗

+
[
(jωI −A)−1B

]∗
M(jωI −A)−1B ≥ 0, ω ∈ R, jω 6∈ σ(A).

Assume, in addition, that N + 1
2(QTB +BTQ) = Π(j∞) > 0. Then V is nonsingular

and by the second equation of (1.1) we have
(
HB − 1

2A
TQ− L

)
V −1 = G,

and from the first equation of (1.1) we conclude that H is a solution to the matrix
Riccati equation

ATH +HA−M + (HB − 1
2A

TQ− L)(V TV )−1
(
HB − 1

2A
TQ− L

)T
= 0. (1.2)

On the other side, if for some ε > 0

Π(jω) := R+ 2 Re Ñ∗G(jω) + [G(jω)]∗Q̃G(jω) ≥ εI, ω ∈ R,

where G(s) := C(sI −A)−1B, C ∈ L(Rn,Rr), then the quadratic performance index

J(x0, u) =
∞∫

0

[
y(t)
u(t)

]T [
Q̃ Ñ

Ñ∗ R

] [
y(t)
u(t)

]
dt, y = Cx
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achieves its minimum over u ∈ L2(0,∞;Rr) (here x0 is an arbitrary fixed initial
condition). The minimal value of J is xT0 Xx0 where X solves the matrix Riccati
equation

XA+ATX + CT Q̃C − (XB + CT Ñ)R−1(BTX + ÑTC) = 0

and it is given by

u = −R−1(BTX + ÑTC)x;

the closed – loop system state matrix A−BR−1(BTX + ÑTC) need not be Hurwitz.
Choosing Q̃, C and Ñ such that M = CT Q̃C, CT Ñ = 1

2A
TQ + L and defining

R := N + 1
2 (QTB +BTQ), H = −X we can deduce solvability of (1.1) or (1.2) from

the result characterizing optimality of J .
In the present paper, similar or related results will be formulated and solved for

Hilbert spaces and operators acting on them in both bounded and unbounded cases.
In particular, the last result for the matrix case is proved for bounded operators and
completed with a result concerning the spectral factorization (Section 2, especially
Theorem 2.4).

In next Section 3 we abbreviated the theory of boundary controlled systems in
factor form. All theirs operators: state, observation and control are unbounded.

It is shown in Section 4 that the Hankel transformation jointly with the so-called
reciprocality approach enables us to reduce the linear-quadratic (LQ) problem for
a system of boundary control in factor form to that of Section 2; the main result of this
section Theorem 4.5 is derived from Theorem 2.4. This means that the whole analysis
reduces to the case of bounded operators only. Theorem 4.5 is a version of the result
obtained in [21], see also [6] and the references therein. The reciprocality approach
has been developed in [4, especially Theorem 4.5, p. 1695]. Therein it has been proved
that the LQ problem (in the present paper denoted as (3.1)–(4.4)) is equivalent to
a control problem for its reciprocal system (further denoted as (4.1)–(4.5)); the results
of [21] were applied to get a new simplified Riccati characterization of the optimal
control/controller in terms of bounded operators only. In the present paper a more
natural and didactically simpler reversed approach is forced: we derive a solution to
the LQ problem for infinite-dimensional systems in factor form using the results of
Section 2.

In Section 5 we present an application of our results to the question of solvability of
some Lur’e resolving systems and to its Riccati counterpart. The results are illustrated
by an example of a rod temperature stabilization feedback control system (Section 5.2).
Here the basic tool is the spectral analysis of the state operator. It enables us to reduce
the solvability of the Lur’e resolving system or/and the Riccati operator equation to
effective numerical procedures available in Matlab/Control Toolbox.

The paper ends with a discussion Section 6 of some problems which arose during
derivation of our theory.
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2. LQ PROBLEM WITH BOUNDED OPERATORS

2.1. FORMULATION OF THE PROBLEM

Let H, U and Y be Hilbert spaces with scalar products 〈·, ·〉H, 〈·, ·〉U and 〈·, ·〉Y,
respectively. Consider the system





ẋ(t) = Ax(t) + Bu(t)
x(0) = x0

y(t) = Cx(t)




, t ≥ 0. (2.1)

where (A,B,C) is a triple of bounded operators A ∈ L(H), B ∈ L(U,H) and
C ∈ L(H,Y).

Consider the infinite-time horizon LQ problem of finding the optimal control
minimizing the quadratic performance index

J(x0,u) =
∞∫

0

[
y(t)
u(t)

]∗ [ Q N
N∗ R

] [
y(t)
u(t)

]
dt, (2.2)

over output trajectories of the system (2.1); here Q = Q∗ ∈ L(Y), N ∈ L(U,Y) and
R = R∗ ∈ L(U).

2.2. SOME AUXILIARY RESULTS

In what follows, a version of the Paley-Wiener theorem will be needed [2, Theorem
1.8.3, p. 48]; it does not require the separability of a Hilbert space.

Theorem 2.1 (Paley-Wiener). Let X be a Hilbert space. Then the map f 7−→ f̂
∣∣∣
C+

is
isometric isomorphism of L2(0,∞; X) onto H2(C+,X). Moreover, for f ∈ L2(0,∞; X),

f̂(σ + jω) = α

π

∞∫

−∞

(Ff)(r)
σ2 + (ω − r)2 dr, j2 = −1.

As σ ↘ 0, ‖f̂(σ + jω)− (Ff)(ω)‖X −→ 0 (ω)-almost everywhere, and
∞∫

−∞

‖f̂(σ + jω)− (Ff)(ω)‖2Xdω −→ 0.

Here f̂ is the Laplace transform of f and Ff is its Fourier transform, whilst H2(C+,X)
stands for the space of holomorphic functions g : C+ 3 s 7−→ g(s) ∈ X such that

‖g‖2H2(C+,X) = sup
α>0

∞∫

−∞

‖g(σ + jω)‖2X dω <∞.
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Actually the isomorphism established by the Laplace transform is a unitary map
and the scalar product in H2(C+,X) is given by the Plancharel theorem

〈f1, f2〉L2(0,∞;X) =
∞∫

0

〈f1(t), f2(t)〉Xdt=
1

2π

∞∫

−∞

〈f̂1(jω), f2(jω)〉Xdω :=〈f̂1, f̂2〉H2(C+;X).

Later we shall use the semigroups of left-shifts on L2(0,∞; X), X is as in
Theorem 2.1, which will be denoted as {TX(t)}t≥0, (TX(t)f) (τ) := f(t+ τ) for almost
all t, τ ≥ 0. It is generated by

Lf = f ′, D(L) = W1,2([0,∞); X),

W1,2([0,∞); X) :=
{
f ∈ L2(0,∞; X) : f ′ ∈ L2(0,∞; X)

}
⊂ C([0,∞); X).

The adjoint of TX(t),

(T ∗X(t)f)(τ) :=
{
f(τ − t) if τ ≥ t,
0 if 0 ≤ τ < t,

is the right-shift operator on L2(0,∞; X) and it is clearly generated by L∗ := R,

Rf = −f ′, D(R) = W1,2
0 ([0,∞); X),

W1,2
0 ([0,∞); X) :=

{
f ∈W1,2([0,∞); X) : f(0) = 0

}
.

2.3. SYSTEM-THEORETIC OPERATORS

Clearly, A generates an analytic group {etA}t∈R,

etA :=
∞∑

k=0

tk

k!A
k, t ≥ 0,

where the series uniformly converges on compact sets of R,
[
etA
]∗ = etA

∗ . The resolvent
of A is the Laplace transform of etA and it satisfies the estimate following from
the geometric series expansion

‖(sI −A)−1‖L(H) ≤
1

|s| − ‖A‖L(H)
, |s| ≥ ‖A‖L(H) . (2.3)

For every x0 ∈ H and u ∈ L2(0,∞; U) the variation-of-constants formula

x(t) = etAx0 +
t∫

0

e(t−τ)ABu(τ)dτ, t ≥ 0,
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defines the unique strong (absolutely continuous) solution of the state equation (2.1)
[17, Theorem 2.9, p. 109], and the output is given by

y(t) = CetAx0 +
t∫

0

Ce(t−τ)ABu(τ)dτ, t ≥ 0. (2.4)

In order to obtain conditions under which the performance index (2.2) is well-defined
we are interested in having: y ∈ L2(0,∞; Y) for any x0 ∈ H and any u ∈ L2(0,∞; U).

Definition 2.2. The output (observation) operator C is said to be (infinite-time)
admissible if the function [0,∞) 3 t 7−→ CetAx0 belongs to L2(0,∞; Y) for every
x0 ∈ H.

By Theorem 2.1, C is admissible iff the function s 7−→ C(sI − A)−1x0 is in
H2(C+; Y) for every x0 ∈ H.

If C is admissible then, the observability map

H 3 x0 7−→ Ψx0 ∈ L2(0,∞; Y), (Ψx0) (t) := CetAx0

is also closed, whence by the closed graph theorem, Ψ ∈ L(H,L2(0,∞; Y)). Conse-
quently, Ψ∗ ∈ L(L2(0,∞; Y),H),

Ψ∗v =
∞∫

0

etA
∗
C∗ v(t)dt ,

and Ψ∗Ψ is called the system observability gramian. Moreover,

‖C(sI −A)−1‖L(H,Y) ≤
1√

2 Re s
‖Ψ‖L(H,L2(0,∞;Y)), s ∈ C+, (2.5)

because for s ∈ C+ there holds

‖C(sI −A)−1x0‖Y ≤
∞∫

0

‖e−stCetAx0‖Ydt ≤ 1√
2 Re s

‖Ψ‖L(H,L2(0,∞;Y)) ‖x0‖H .

It is also clear that

TY(t)Ψx0 = ΨetAx0, x0 ∈ H, t ≥ 0. (2.6)

The second component in the right hand side (RHS) of (2.4) naturally defines the
input-output operator of convolution

(Fu)(t) :=
t∫

0

CeτABu(t− τ)dτ, u ∈ L2(0,∞; U),
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but if C is admissible then, it reads as

(Fu)(t) =
t∫

0

Ψ [Bu(t− τ)] (τ)dτ =
∞∫

0

Ψ [B (Rtu) (τ)] dτ,

where Rt stands for the reflection operator at t > 0: Rt ∈ L(L2(0,∞); U),

(Rtf)(τ) :=
{

f(t− τ), τ ∈ [0, t)
0, τ ≥ t

}
, Rt = R∗t , ‖Rt‖L(L2(0,∞);U) ≤ 1.

The last representation is especially useful to find the Laplace transform of Fu. Indeed,
let us notice that the Laplace transform of the function t 7−→ (Rtu) (τ) is e−sτ û(s),
whence

(F̂u)(s) =
∞∫

0

Ψ
[
Be−sτ û(s)

]
(τ)dτ = ̂Ψ[Bû(s)] = C(sI −A)−1Bû(s),

which shows that F is under the Laplace transform similar to the operator of multipli-
cation by an operator-valued system transfer function Ĝ

(F̂u)(s) = Ĝ(s)û(s), Ĝ(s) := C(sI −A)−1B, s ∈ C+.

However the estimate

‖Ĝ(s)‖L(U,Y) ≤
1√

2 Re s
‖Ψ‖L(H,L2(0,∞;Y)) ‖B‖L(H,U) , s ∈ C+,

following from (2.5) is not enough to ensure the boundedness of the above operator of
multiplication. Nevertheless, assuming that

Ĝ ∈ H∞(C+,L(U,Y))

and making use of Theorem 2.1 we conclude that then F ∈ L(L2(0,∞; U),L2(0,∞; Y)).
Recall that Ĝ ∈ H∞(C+,Z), C+ := {s ∈ C : Re s > 0}, for some Banach space Z,

if Ĝ : C+ 3 s 7−→ Ĝ(s) ∈ Z is holomorphic and ‖Ĝ‖H∞(C+,Z) = sups∈C+ ‖Ĝ(s)‖Z <∞;
this definition applies to Z = L(U,Y) as it is a Banach space.

If the latter holds then the adjoint operator F∗ ∈ L(L2(0,∞; Y),L2(0,∞; U)) takes
the form following from Tonelli’s theorem:

(F∗v) (t) :=
∞∫

t

B∗e(τ−t)A∗C∗ v(τ)dτ = B∗
∞∫

0

eξA∗C∗v(t+ ξ)dξ

= B∗Ψ∗TY(t)v, v ∈ L2(0,∞; Y).

It follows from the last representation and the asymptotic stability of {TY(t)}t≥0
in strong topology, i.e., ‖TY(t)v‖Y −→ 0 for every v ∈ Y as t→∞, that the function
t 7−→ (F∗v) (t) ∈ U is strongly continuous and strongly tends to 0 as t→∞.



28 Piotr Grabowski

Lemma 2.3. The following two identities hold:

TY(t)Fu = FTU(t)u + Ψ
t∫

0

e(t−τ)ABu(τ)dτ,u ∈ L2(0,∞; U); (2.7)

FT ∗U(t) = T ∗Y(t)F (⇐⇒ TU(t)F∗ = F∗TY(t)) . (2.8)

(2.8) means that F is shift-invariant.

Proof. Indeed, with ξ ≥ 0 and u ∈ L2(0,∞; U),

(FTU(t)u) (ξ) +


Ψ

t∫

0

e(t−τ)ABu(τ)dτ


 (ξ)

=
ξ∫

0

Ce(ξ−τ)ABu(t+ τ)dτ + CeξA
t∫

0

e(t−τ)ABu(τ)dτ

=
t+ξ∫

t

Ce(ξ−r+t)ABu(r)dr +
t∫

0

Ce(ξ+t−τ)ABu(τ)dτ

=
t+ξ∫

0

Ce(ξ+t−τ)ABu(τ)dτ = (TY(t)Fu) (ξ),

giving (2.7), whilst (2.8) holds because

(FT ∗U(t)u) (ξ) =
ξ∫

0

Ce(ξ−τ)AB
{ u(τ − t), τ ≥ t

0, 0 ≤ τ < t

}
dτ

=
ξ−t∫

−t

Ce(ξ−r−t)AB
{ u(r), r ≥ 0

0, −t ≤ r < 0

}
dr

=





ξ−t∫

0

Ce(ξ−r−t)ABu(r)dr if ξ − t ≥ 0

0 if ξ − t < 0





= (T ∗Y(t)Fu) (ξ).

2.4. MAIN RESULTS

For the sake of simplicity the operators Q, N and R will be identified, if necessary,
with the operator of multiplication induced by these operators – both in time and
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frequency domains. In particular, this enables us to notice that the following elementary
commutative relationships hold:

TY(t)Q = QTY(t), TU(t)R = RTU(t),
TU(t)N∗ = N∗TY(t), NTU(t) = TY(t)N.

(2.9)

Now, we are in position to proof our main result.
Theorem 2.4. If C is admissible, Ĝ ∈ H∞(C+; L(U,Y)) and the Popov spectral
function

Π(jω) := R + 2 Re
[
N∗Ĝ(jω)

]
+
[
Ĝ(jω)

]∗
QĜ(jω) (2.10)

is coercive, i.e., there exists ε > 0 such that Π(jω) ≥ εI for almost all ω ∈ R, then:
(i) the LQ problem has a unique solution, R is boundedly invertible and the optimal

control uc ∈ L2(0,∞; U) can be realized in the linear feedback form

uc(t) = −R−1 [B∗Hc + N∗C] xc(t), (2.11)

where Hc ∈ L(H), Hc = (Hc)∗ stands for the minimal cost operator given by
J(x0,uc) = 〈x0,Hcx0〉H, and Hc satisfies the operator Riccati equation

A∗Hc +HcA + C∗QC = (HcB + C∗N)R−1(B∗Hc + N∗C). (2.12)

Moreover, the pair (H,G)

H := −Hc, G := −(HcB + C∗N)R−1/2 (2.13)

is a solution to the Lur’e system of resolving equations
{

A∗H + HA−C∗QC =−GG∗
−HB + C∗N =−GR1/2

}
, (2.14)

satisfying H ∈ L(H), H = H∗ and G ∈ L(U,H).
(ii) If, in addition:

{etA}t≥0 is uniformly bounded ⇐⇒ ∃M ≥ 1∀t ≥ 0 : ‖etA‖L(H) ≤M (2.15)

and
σ(A) ∩ jR ⊂ {0}, (2.16)

then G∗ is an admissible observation operator and Θ ∈ H∞(C+,L(U)), where

Θ(s) := R1/2 −G∗(sI −A)−1B; (2.17)

Θ is a spectral factor of Π, i.e., [Θ(jω)]∗Θ(jω) = Π(jω) for almost all ω ∈ R
and

[Θ(s)]−1 = R−1/2 + R−1/2G∗(sI −Ac)−1BR−1/2, (2.18)
Θ−1 ∈ H∞(C+,L(U)), where Ac := A + BR−1/2G∗ is the closed-loop state
operator.
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Proof. Part (i). Step 1. Since C be admissible and F ∈ L(L2(0,∞; U),L2(0,∞; Y))
the output equation can be written as

y = Ψx0 + Fu, x0 ∈ H,u ∈ L2(0,∞; U),

which enables us to eliminate y from J:

J(x0,u) = 〈Qy + Nu,y〉L2(0,∞;Y) + 〈N∗y + Ru,u〉L2(0,∞;U)

= x∗0Ψ∗QΨx0 + x∗0Ψ∗(QF+ N)u + u∗(F∗Q + N∗)Ψx0 + u∗Ru,
(2.19)

where
R := R + F∗N + N∗F+ F∗QF ∈ L(L2(0,∞; U)).

Assume that R is coercive, i.e., there exists ε > 0 such that R ≥ εI. This assumption
may turn to be difficult to check directly. In those instances one may try to verify its
frequency-domain counterpart we can get using Theorem 2.1,

〈u,Ru〉L2(0,∞;U) = 〈û, R̂u〉H2(C+;U) = 1
2π

∞∫

−∞

[û(jω)]∗Π(jω)û(jω)dω,

and therefore R is coercive because Π(jω) is coercive.
Since R is coercive the performance index J has a unique minimum over L2(0,∞; U)

which satisfies J ′(u) = 0, where J ′(u) denotes the Fréchet derivative of J with respect
to u. This necessary and sufficient condition of optimality yields the control

uc := −R−1(F∗Q + N∗)Ψx0, (2.20)

which minimizes the functional (2.19) with respect to u and with x0 fixed arbitrarily.
Inserting this control back into (2.19) one obtains the minimal cost J(x0,uc) =

x∗0Hcx0, where

Hc := Ψ∗
[
Q− (QF+ N)R−1(F∗Q + N∗)

]
Ψ (2.21)

defines a bounded self-adjoint operator Hc ∈ L(H).
Step 2. Next objective is to show that the optimal control (2.20) can be expressed

as a linear feedback control law. For that we firstly show that for each u ∈ L2(0,∞; U):

TU(t)Ru = RTU(t)u + (F∗Q + N∗)Ψ
t∫

0

e(t−τ)ABu(τ)dτ. (2.22)

Indeed, by (2.9) and (2.8), we have

TU(t)Ru = TU(t)Ru + TU(t)F∗Nu + TU(t)N∗Fu + TU(t)F∗QFu
= RTU(t)u + F∗TY(t)Nu + N∗TY(t)Fu + F∗TY(t)QFu
= RTU(t)u + F∗NTU(t)u + (F∗Q + N∗)TY(t)Fu.
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Applying (2.7) we get

TU(t)Ru = (R + F∗N)TU(t)u + (F∗Q + N∗)FTU(t)u

+ (F∗Q + N∗)Ψ
t∫

0

e(t−τ)ABu(τ)dτ = RTU(t)u

+ (F∗Q + N∗)Ψ
t∫

0

e(t−τ)ABu(τ)dτ,

whence (2.22) holds.
Secondly, define the dual state variable

λ(t) :=
∞∫

t

e(τ−t)A∗C∗ [QCx(τ) + Nu(τ)] dτ

=
∞∫

0

eτA∗C∗ [Qy(t+ τ) + Nu(t+ τ)] dτ

= Ψ∗QTY(t)y + Ψ∗NTU(t)u = Ψ∗QTY(t)Ψx0 + Ψ∗QTY(t)Fu + Ψ∗NTU(t)u
=︸︷︷︸

(2.6) and (2.7)

Ψ∗QΨx(t) + Ψ∗(QF+ N)TU(t)u.

Now we claim that

Ru + N∗Cx + B∗λ = Ru + (F∗Q + N∗)Ψx0. (2.23)

Indeed, applying definitions of λ, F∗, R and (2.9), we get

Ru + N∗Cx + B∗λ = Ru + N∗y + B∗λ
= Ru + N∗Ψx0 + N∗Fu + B∗Ψ∗QTY(t)Ψx0 + B∗Ψ∗QTY(t)Fu + B∗Ψ∗NTU(t)u
= (R + N∗F)u + N∗Ψx0 + B∗Ψ∗TY(t)QΨx0 + B∗Ψ∗TY(t)QFu + B∗Ψ∗TY(t)Nu
= (R + N∗F+ F∗QF+ F∗N)u + (F∗Q + N∗)Ψx0 = Ru + (F∗Q + N∗)Ψx0.

In particular, for u = uc, one gets applying subsequently (2.22), (2.20), (2.8), (2.9)
and (2.6)

TU(t)uc = R−1


TU(t)Ruc − (F∗Q + N∗)Ψ

t∫

0

e(t−τ)ABuc(τ)dτ




= −R−1


TU(t)(F∗Q + N∗)Ψx0 + (F∗Q + N∗)Ψ

t∫

0

e(t−τ)ABuc(τ)dτ



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= −R−1(F∗Q + N∗)


TY(t)Ψx0 + Ψ

t∫

0

e(t−τ)ABuc(τ)dτ




= −R−1(F∗Q + N∗)Ψ


etAx0 +

t∫

0

e(t−τ)ABuc(τ)dτ




= −R−1(F∗Q + N∗)Ψxc(t),

where xc denotes the state generated by the optimal control uc (solution of (2.1)
corresponding to optimal control uc). Hence, by the analogous definition of λc
and (2.21),

λc(t) = Ψ∗QΨxc(t) + Ψ∗(FQ + N)TU(t)uc

= Ψ∗QΨxc(t)−Ψ∗(FQ + N)R−1(F∗Q + N∗)Ψxc(t) = Hcxc(t)

and consequently (apply directly the definition of λ to calculate λ̇c),

0 ≡ λ̇c(t)−Hcẋc(t)
= −A∗λc(t)−C∗QCxc(t)−C∗Nuc(t)−Hc [Axc(t) + Buc(t)]
= [−A∗Hc −HcA−C∗QC] xc(t) + [−C∗N−HcB] uc(t).

(2.24)

For u = uc we get from (2.23)

Ruc + N∗Cxc + B∗λc = 0,

whence
Ruc(t) + N∗Cxc(t) + B∗Hcxc(t) ≡ 0.

It follows from (2.3) that Ĝ(∞) = 0 and therefore Π(j∞) = R. As Π(jω) is coercive,
the operator R is invertible with R−1 ∈ L(U), and the optimal control is realizable in
a feedback form (2.11).

Inserting (2.11) into (2.24) we get
[
A∗Hc +HcA + C∗QC− (HcB + C∗N)R−1(B∗Hc + N∗C)

]
xc(t) ≡ 0

which, by taking t = 0, implies that Hc satisfies the Riccati operator equation (2.12).
Step 3. The minimal cost operator Hc solves (2.12), whence the pair (H,G) given

by (2.13) is a solution to (2.14) and the optimal controller (2.11) reads as

uc(t) = R−1/2G∗xc(t).

Part (ii). Step 1. Premultiplying the Lyapunov equation in (2.14) by x0e
tA∗ and

postmultiplying it by etAx0 we get:

d
dt

[
x∗0etA

∗
HetAx0

]
= x∗0etA

∗
[A∗H + HA] etAx0

= x∗0etA
∗
C∗QCetAx0 − x∗0etA

∗
GG∗etAx0,
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whence, integrating both sides from 0 to t one obtains (here Rt denotes the reflection
operator on L2(0,∞; Y))

− x∗0etA
∗
HetAx0 + x∗0Hx0+

t∫

0

x∗0eτA∗C∗QCeτAx0dτ =
t∫

0

x∗0eτA∗GG∗eτAx0dτ

⇐⇒ −x∗0etA
∗
HetAx0 + x∗0Hx0+〈RtΨx0,QRtΨx0〉L2(0,∞;Y) =

t∫

0

∥∥G∗eτAx0
∥∥2

U dτ.

Suppose that, in addition, the semigroup {etA}t≥0 is uniformly bounded, then we have

(M2 + 1)‖H‖L(H)‖x0‖2H + ‖Q‖L(Y)‖Ψ‖2L(H,L2(0,∞;Y))‖x0‖2H

≥
t∫

0

∥∥G∗eτAx0
∥∥2

U dτ, t ≥ 0,

and G∗ is an admissible observation operator with respect to {etA}t≥0. From the
second equation of (2.14) in its adjoint form: −B∗H = −R1/2G∗ −N∗C we conclude
that −B∗H is admissible with respect to {etA}t≥0.

Step 2. If, in addition (2.16) holds, then (jωI −A)−1 ∈ L(H), (−jωI −A∗)−1 ∈
L(H) for ω 6= 0, and consequently (jωI −A)−1B ∈ L(U,H), B∗(−jωI −A∗)−1 ∈
L(H,U). Premultiplying the Lyapunov equation in (2.14) by B∗(−jωI −A∗)−1 and
postmultiplying it by (jωI −A)−1B we get:

B∗(−jωI −A∗)−1A∗H(jωI −A)−1B + B∗(−jωI −A∗)−1HA(jωI −A)−1B
= −jωB∗(−jωI −A∗)−1H(jωI −A)−1B−B∗H(jωI −A)−1B

+ jωB∗(−jωI −A∗)−1H(jωI −A)−1B−B∗(−jωI −A∗)−1HB
= −2 Re

[
B∗H(jωI −A)−1B

]

= B∗(−jωI −A∗)−1C∗QC(jωI −A)−1B−B∗(−jωI −A∗)−1GG∗(jωI −A)−1B

=
[
Ĝ(jω)

]∗
QĜ(jω)−B∗(−jωI −A∗)−1GG∗(jωI −A)−1B.

From the second equation of (2.14)

−B∗H(jωI −A)−1B = −R1/2G∗(jωI −A)−1B−N∗Ĝ(jω),

−B∗(−jωI −A∗)−1HB = −B∗(−jωI −A∗)−1GR1/2 −
[
Ĝ(jω)

]∗
N

and thus
R −R1/2G∗(jωI −A)−1B−B∗(−jωI −A∗)−1GR1/2

+ B∗(−jωI −A∗)−1GG∗(jωI −A)−1B

= R + N∗Ĝ(jω) +
[
Ĝ(jω)

]∗
N +

[
Ĝ(jω)

]∗
QĜ(jω)

⇐⇒ Π(jω) =
[
R1/2 −G∗(jωI −A)−1B

]∗ [
R1/2 −G∗(jωI −A)−1B

]
.
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Since G∗ is admissible, we have that

C+ 3 s 7→ G∗(sI −A)−1Bu ∈ H2(C+; Y)

for all u ∈ U. Thus the function

Θ(s) = R1/2 −G∗(sI −A)−1B

is holomorphic on C+ \ {0} and has boundary value

jR \ {0} 3 jω 7−→ Θ(jω) ∈ L(U,Y)

which, by [Θ(jω)]∗Θ(jω) = Π(jω) belongs to L∞(jR; L(U,Y)) with ‖Π(jω)‖L(U) =
‖Θ(jω)‖2L(U,Y). Applying [15, Lemma 3, p. 956] we conclude that Θ ∈
H∞(C+; L(U,Y)).

Notice that G∗(sI −A)−1B and Θ(s) are transfer functions of the system (2.1)
with the output equation replaced by: y(t) = G∗x(t) and y(t) = −G∗x(t) + R1/2u(t),
respectively.

Step 3. By the optimality of uc, G∗ is an admissible observation operator with
respect to the closed-loop semigroup {etAc}t≥0 generated by Ac, equivalently,

s 7−→ G∗(sI −Ac)−1x0 ∈ H2(C+,U).

Since ûc ∈ H2(C+,U), ûc(s) = R−1/2G∗(sI −Ac)−1x0, we have

(sI −Ac)−1x0 = x̂c(s) = (sI −A)−1x0 + (sI −A)−1Bûc(s), (2.25)

whence the resolvent of Ac is analytic on C+ and has boundary values almost every-
where on jR. Moreover,

I − (sI −A)−1BR−1/2G∗ = (sI −A)−1(sI −A−BR−1/2G∗)
= (sI −A)−1(sI −Ac)

(2.26)

is boundedly invertible for every s ∈ C+ with the inverse
[
I − (sI −A)−1BR−1/2G∗

]−1
= (sI −Ac)−1(sI −A)

having boundary values almost everywhere on jR.
Recalling that sI −Ac = sI −A−BR−1/2G∗, we get

I −BR−1/2G∗(sI −A)−1 = (sI −Ac)(sI −A)−1 (2.27)

whence I −BR−1/2G∗(sI −A)−1 is boundedly invertible for every s ∈ C+ with the
inverse [

I −BR−1/2G∗(sI −A)−1
]−1

= (sI −A)(sI −Ac)−1
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having boundary values almost everywhere on jR. From (2.26) and (2.27) we obtain
[
I − (sI −A)−1BR−1/2G∗

]
(sI −Ac)−1 = (sI −A)−1

= (sI −Ac)−1
[
I −BR−1/2G∗(sI −A)−1

]
.

Premultiplying both sides by G∗ and postmultiplying them by BR−1/2 we get the
commutativity relation

[
Θ(s)R−1/2

] [
G∗(sI −Ac)−1BR−1/2

]
= G∗(sI −A)−1BR−1/2

=
[
G∗(sI −Ac)−1BR−1/2

] [
Θ(s)R−1/2

]
.

(2.28)

Now, by (2.28) and (2.17),

Θ(s)
[
R−1/2 + R−1/2G∗(sI −Ac)−1BR−1/2

]

=
[
Θ(s) + G∗(sI −A)−1B

]
R−1/2 = I

and
[
R−1/2 + R−1/2G∗(sI −Ac)−1BR−1/2

]
Θ(s)

= R−1/2 [Θ(s) + G∗(sI −A)−1B
]

= I.

This means that Θ(s) is boundedly invertible at any s ∈ C+ as well as almost
everywhere on jR with the inverse given by (2.18), and Θ−1(s) is the transfer function
of system with the state operator Ac, control operator BR−1/2, observation operator
R−1/2G∗ and feedthrough operator R−1/2; see Figure 1 for an additional piece of
information. We have Θ−1 ∈ H∞(C+,U) iff

s 7→ R−1/2G∗(sI −Ac)−1BR−1/2

is in H∞(C+,U). Since

‖Π(jω)‖L(U)‖u‖2U = ‖Θ(jω)u‖2U ≥ ε‖u‖2U

then substituting v = [Θ(jω)]−1 u we get ‖ [Θ(jω)]−1 ‖L(U) ≤ ε−1/2 for almost all
ω ∈ R, whence ‖Θ−1‖L∞(jR,L(U)) ≤ ε−1/2. Consequently, the boundary value of

s 7−→ R−1/2G∗(sI −Ac)−1BR−1/2

at jR is in L∞(jR,L(U)). Applying [15, Lemma 3, p. 956] once more we have
Θ−1 ∈ H∞(C+,U).
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sR−1/2 -����--+

Θ(s)−R1/2

6−

�

Fig. 1. Feedback realization of [Θ(s)]−1

3. AN OVERVIEW OF CONTROL SYSTEMS IN FACTOR FORM

Consider a class of controlled systems with observation governed by the model in
factor form {

ẋ(t) = A [x(t) +Du(t)] ,
y(t) = Cx(t),

(3.1)

where the state operator A : (D(A) ⊂ H) −→ H generates an exponentially stable
C0-semigroup {S(t)}t≥0 on a Hilbert space H with scalar product 〈·, ·〉H. A family
{S(t)}t≥0 ⊂ L(H) is a C0-semigroup on H if (i) S(0) = I, S(t + τ) = S(t)S(τ) for
t, τ ≥ 0 and (ii) S(t)x0 → x0 as t → 0 for every x0 ∈ H. {S(t)}t≥0 is exponentially
stable (EXS) if there exist M ≥ 1 and α > 0 such that

‖S(t)x0‖H ≤Me−αt ‖x0‖H , t ≥ 0, x0 ∈ H. (3.2)

We say that A generates {S(t)}t≥0 if

Ax0 = lim
h→0

1
h

[S(h)x0 − x0], D(A) =
{
x0 ∈ H : there exists lim

h→0

1
h

[S(h)x0 − x0]
}
.

Since s 7→ (sI −A)−1x0 is the Laplace transform of t 7→ S(t)x0 then, by (3.2), the
half-plane {s ∈ C : Re s > −α} is contained in ρ(A) – the resolvent set of A which, in
particular, implies that A is invertible with bounded and everywhere defined inverse,
A−1 ∈ L(H).

Next, C : (D(C) ⊂ H) −→ Y, CA−1 ∈ L(H,Y), D ∈ L(U,H) with range R(D) ⊂
D(C), CD ∈ L(U,Y) and Y and U are Hilbert spaces with scalar products 〈·, ·〉Y and
〈·, ·〉U, respectively.

Let us introduce H := (CA−1)∗ ⇐⇒ H∗ = CA−1 ∈ L(H,Y) to simplify future
notation.

Proofs of all results appearing in this Section are given in [7, Section 2].
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3.1. ADMISSIBLE OBSERVATION AND CONTROL OPERATORS

Define Z ∈ L(H,L2(0,∞; Y)),

(Zx0) (t) := H∗S(t)x0


⇐⇒ Z∗f =

∞∫

0

S∗(t)Hf(t)dt


 .

The operator, called the observability map,

Ψ := LZ, D(Ψ) = {x ∈ H : Zx ∈ D(L)},

is closed and densely defined, with Ψ|D(A) = ZA, and therefore it has closed and
densely defined adjoint operator

Ψ∗ = A∗Z∗, D(Ψ∗) = {y ∈ L2(0,∞; Y) : Z∗y ∈ D(A∗)},

and Ψ∗|D(R) = Z∗R.

Definition 3.1. C is an admissible observation (output) operator if Ψ ∈
L(H,L2(0,∞; Y)) (or, by the closed graph theorem, R(Z) ⊂ D(L) or Ψ is bounded).

Lemma 3.2. If C is admissible then Ψ is also a linear densely defined and bounded
operator from H into L1(0,∞; Y).

Next, we define W ∈ L(L2(0,∞; U),H),

Wf :=
∞∫

0

S(t)Df(t)dt [⇐⇒ (W∗x0) (t) = D∗S∗(t)x0] .

The operator, called the reachability map,

Φ := AW, D(Φ) = {u ∈ L2(0,∞; U) :Wu ∈ D(A)},

is closed and densely defined, with Φ|D(R) = WR, and therefore it has closed and
densely defined adjoint operator

Φ∗ = LW∗, D(Φ) = {x ∈ H : W∗x ∈ D(L)},

with Φ∗|D(A∗) =W∗A∗.

Definition 3.3. D is an admissible factor control operator if Φ ∈ L(L2(0,∞; U),H)
(or, by the closed graph theorem, R(W) ⊂ D(A) or Φ is bounded).

Using duality arguments, we can state the following result.

Lemma 3.4. D is an admissible factor control operator iff D∗A∗ is an admissible
observation operator with respect to the semigroup {S∗(t)}t≥0.
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3.2. REPRESENTATION OF THE STATE

Definition 3.5. Let x0 ∈ H and u ∈ L2(0,∞; U). A continuous vector valued function
t 7→ x(t) ∈ H is called a weak solution of (3.1) if x(0) = x0 and x satisfies (3.1) in
a weak sense, i.e., the function t 7→ 〈x(t), w〉H is absolutely continuous and for almost
all t ≥ 0:

d
dt 〈x(t), w〉H = 〈x(t),A∗w〉H + 〈Du(t),A∗w〉H, w ∈ D(A∗).

In what follows, BUC([0,∞); Z) will denote the Banach space of bounded, uniformly
continuous functions defined on [0,∞) and taking values in a Hilbert space Z, equipped
with standard norm

‖f‖BUC([0,∞);Z) := sup
t≥0
‖f(t)‖Z, f ∈ BUC([0,∞); Z);

BUC0([0,∞); Z) will stand for its closed subspace consisting of functions that have
zero limit at infinity.

Theorem 3.6. If A generates an EXS C0-semigroup {S(t)}t≥0 and D is an admissible
factor control operator, then for every x0 ∈ H and u ∈ L2(0,∞; U)

x(t) := S(t)x0 + ΦRtu, (3.3)

we have x ∈ BUC0([0,∞),H) and x is a unique weak solution of (3.1). Furthermore,
for every z ∈ H the function t 7−→ 〈x(t), z〉H is in L2(0,∞).

3.3. REPRESENTATION OF THE OUTPUT

Now we pass to the construction of the system output in operator form. For that we
assume that the system transfer function

ĝ(s) := sC(sI −A)−1D − CD = s2H∗(sI −A)−1D − sH∗D − CD (3.4)

(thus ĝ is well-defined for Re s > −α) satisfies

ĝ ∈ H∞(C+,L(U,Y)) (3.5)

Let us remark that ĝ is analytic on a set containing C+ and (3.4) implies that ĝ
grows no faster than quadratically on C+, whence by the Phragmén-Lindelöf theorem
(3.5) is met if ĝ is bounded on jR. Moreover, (3.5) yields

‖ĝ(jω)‖L(U,Y) ≤ ‖ĝ‖H∞(C+,L(U,Y)) , ω ∈ R.

Theorem 3.7. Let A generates an EXS C0-semigroup {S(t)}t≥0, C and D be
admissible and (3.5) holds. Then, for every x0 ∈ H and u ∈ L2(0,∞; U):

y = Ψx0 + Fu,
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where F ∈ L(L2(0,∞; U),L2(0,∞; Y)) is the input-output operator,

(Fu) (t) := d
dt

t∫

0

(Ψ[Du(τ)]) (t− τ)dτ − (CD)u(t).

Moreover,
d
dt [H∗x(t)] = y(t) + CDu(t) = Cx(t) + CDu(t).

3.4. SYSTEMS WITH A LINEAR FEEDBACK

A basic result characterizing the well-posedness of systems with a linear feedback
is the following version of the Weiss-Staffans perturbation theorem.

Theorem 3.8. Let A generates an EXS C0-semigroup {S(t)}t≥0 on H, C and D be
admissible operators, and D∗A∗ extends from D(A∗) to D# with domain D(D#) such
that R(H) ⊂ D(D#) and D#H = (CD)∗, CD ∈ L(U,Y). Assume that (3.5) is met
and for some K ∈ L(Y,U) there holds

s 7→ [I + ĝ(s)K]−1 ∈ H∞(C+,L(Y)) ⇐⇒ s 7→ [I +Kĝ(s)]−1 ∈ H∞(C+,L(U)).

Then, the closed-loop operator Ac arising by applying linear feedback control law
u = −Ky = −KCx to (3.1), i.e.,

Acx = A(x−DKCx), D(Ac) = {x ∈ D(C) : x−DKCx ∈ D(A)} , (3.6)

generates an EXS C0-semigroup {Sc(t)}t≥0 on H.

4. APPLICATION TO LQ PROBLEM FOR SYSTEMS IN FACTOR FORM

4.1. RECIPROCAL SYSTEM

4.1.1. Preliminaria
The following result will be paramount [10, p. 134, Problem 3 and Corollary, p. 147].

Lemma 4.1. Let X be a Hilbert space. Then, the operator

H2(C+,X) 3 ϕ 7−→ s−1ϕ(s−1) ∈ H2(C+,X),

is a unitary map, whilst the mapping

I : H∞(C+,L(U,Y)) 3 ϕ(s) 7−→ ϕ(s−1) ∈ H∞(C+,L(U,Y))

is an isometry.
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The Hankel transformation of order 0 is defined as

(H0f) (t) :=
∞∫

0

J0(2
√
tτ)f(τ)dτ,

where J0 stands for the Bessel function of the first kind and zero order (in early
1990s Gamage K. Watugala wrongly renamed the Hankel transformation to Sumudu
transform and this error became persistent in Asian literature). It is straightforward
to see (apply the Lebesgue dominated convergence theorem) that

H0 ∈ L(L1(0,∞; Z),L∞(0,∞; Z)); (H0f) ∈ C([0,∞); Z), lim
t→∞

(H0f) (t) = 0.

Efros’ theorem [1, pp. 12-13] states that under the assumption that a change of
order of integration is possible while computing the Laplace transform, one has that the
Laplace transform of

∫∞
0 g(t, τ)f(τ)dτ equals f̂ [q(s)]G(s), provided that the Laplace

transform of g(·, τ) is G(s)e−τq(s). Since ̂J0(2
√·τ) = 1

se
− τs [3, p. 185, Formula (25)]

(here G(s) = q(s) = 1
s ), then by Fubini’s and Efros’ theorems [3, p. 132,

Formula (32), ν = 0]

Ĥ0f(s) = 1
s
f̂

(
1
s

)
, f ∈ L1(0,∞; Z).

Since L1(0,∞; Z)∩L2(0,∞; Z) is dense in L2(0,∞; Z) (here Z is a Hilbert space), then
using Lemma 4.1, we conclude that the Hankel transform H0 is a time-domain version
of

(Ĥ0ϕ)(s) := (1/s)ϕ(1/s),
so it maps unitarily L2(0,∞; Z) onto itself; confirmed by [3, p. 132, Formula (25),
ν = 0].
Lemma 4.2. The admissibility of C with respect to the EXS semigroup {S(t)}t≥0,
is equivalent to the admissibility of H∗, with respect to the semigroup {etA−1}t≥0.
The admissibility of D with respect to the semigroup {S(t)}t≥0, is equivalent to the
admissibility of D∗ with respect to the semigroup {etA∗}t≥0, etA

∗ = etA
−∗ .

Proof. The first fact is an immediate consequence of

(Ψ̂x0)(s) = C(sI −A)−1x0 = −1
s
H∗
(

1
s
I −A−1

)−1
x0,

where the RHS has to be identified with the Hankel transform of Ψ̂H∗x0 – the Laplace
transforms of the observability map associated with the output operator (−H∗) with
respect to {etA−1}t≥0.

For the second statement notice that, by duality Lemma 3.4, D is admissible
with respect to the semigroup {S(t)}t≥0 iff D∗A∗ is admissible with respect to the
semigroup {S∗(t)}t≥0, but the latter holds iff D∗ is admissible with respect to the semi-
group {etA∗}t≥0, etA

∗ = etA
−∗ .
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4.1.2. Reciprocal system: case where both C and D are admissible
In this section we shall assume that A generates an EXS C0-semigroup, both C, D
are admissible, and (3.5) holds.

By Theorem 3.6, especially (3.3),

x(t) = S(t)x0 +A
t∫

0

S(t− τ)Du(τ)dτ, x ∈ BUC0([0,∞); H)

is a unique weak solution of (3.1) with the Laplace transform

x̂(s) = (sI −A)−1x0 +A(sI −A)−1Dû(s), s ∈ C+.

The inverse s 7→ 1
s
conformally maps C+ onto itself and therefore

1
s
x̂

(
1
s

)
= 1
s

(
1
s
I −A

)−1
x0 +A

(
1
s
I −A

)−1
D
[

1
s
û

(
1
s

)]

= −s
(
sI −A−1)−1

x0 + x0 − s
(
sI −A−1)−1D

[
1
s
û

(
1
s

)]
,

whence
1
s
x̂

(
1
s

)
= −̂̇xa(s),

i.e., it is the Laplace transform of ẋa = −H0x, where xa is the unique solution
of the reciprocal system





ẋa(t) = A−1xa(t) +Dua(t)
xa(0) = x0

ya(t) := CA−1xa(t) = H∗xa(t)



 , ua := H0u⇔ ûa := Ĥ0u, (4.1)

which contains bounded operators exclusively.
Conversely, since

1
s
x̂

(
1
s

)
= −

[
A−1x̂a(s) +Dûa(s)

]
,

we have

x̂(s) +Dû(s) = −A−1 1
s
x̂a

(
1
s

)
⇐⇒ x(t) +Du(t) = −A−1H0xa(t).

Hence
x̂(s) +Dû(s) ∈ D(A), 1

s
x̂a

(
1
s

)
= −A [x̂(s) +Dû(s)] . (4.2)

Next, the Laplace transform of the output of (3.1) reads as

ŷ(s) = C(sI −A)−1x0 + ĝ(s)û(s),



42 Piotr Grabowski

whence

(Ĥ0y)(s) = 1
s
ŷ

(
1
s

)
= 1
s
C
(

1
s
I −A

)−1
x0 + ĝ

(
1
s

)[
1
s
û

(
1
s

)]

= −(CA−1)
(
sI −A−1)−1

x0 − Ĝa(s)ûa(s)− (CD)ûa(s)
= −ŷa(s)− (CD)ûa(s),

where Ĝa(s) := H∗(sI −A−1)−1D is the reciprocal system transfer function. Since

sC(sI −A)−1D = −CA−1
[

1
s
I −A−1

]−1
D = −IĜa(s), (4.3)

we have the following results.

Lemma 4.3. ĝ ∈ H∞(C+,L(U,Y)) iff Ĝa(s) ∈ H∞(C+,L(U,Y)).

4.2. SOLUTION OF LQ PROBLEM

Let us consider the infinite-time horizon LQ problem of finding the optimal control
or/and optimal controller, minimizing the quadratic performance index

J(x0, u) =
∞∫

0

[
y(t)
u(t)

]∗ [
Q N
N∗ R

] [
y(t)
u(t)

]
dt

= 〈Qy +Nu, y〉L2(0,∞;Y) + 〈N∗y +Ru, u〉L2(0,∞;U)

(4.4)

over output trajectories of (3.1); Q = Q∗ ∈ L(Y), N ∈ L(U,Y) and R = R∗ ∈ L(U).
Observe that

〈Qy +Nu, y〉L2(0,∞;Y) + 〈N∗y +Ru, u〉L2(0,∞;U)

= 〈H0Qy + H0Nu,H0y〉L2(0,∞;Y) + 〈H0N
∗y + H0Ru,H0u〉L2(0,∞;U)

= 〈QH0y +NH0u,H0y〉L2(0,∞;Y) + 〈N∗H0y +RH0u,H0u〉L2(0,∞;U)

= 〈Q[−ya − CDua] +Nua,−ya − CDua〉L2(0,∞;Y)

+ 〈N∗[−ya − CDua] +Rua, ua〉L2(0,∞;U)

=
∞∫

0

[
ya(t)
ua(t)

]∗ [
Q −N−
−N∗− R−

] [
ya(t)
ua(t)

]
dt := Ja(x0, ua),

where

N− := N −Q(CD), R− := R− (CD)∗N −N∗(CD) + (CD)∗Q(CD) = R∗−, (4.5)

and the last performance index is being optimized over output trajectories of
the reciprocal system (4.1).
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However, the problem of minimization of Ja over trajectories of (4.1) is a particular
case of minimization of J, given by (2.2), over output trajectories of (2.1), to which
Theorem 2.4 applies. To see this the following identifications are proper:

x =xa,
u =ua,
y = ya,

∣∣∣∣∣∣

A =A−1,
B =D,
C =H∗,

∣∣∣∣∣∣

Q = Q,
N =−N−,
R = R−,

∣∣∣∣∣∣
Ĝ= Ĝa,
J = Ja,

(4.6)

whence

Π(jω) = R + 2 Re
[
N∗Ĝ(jω)

]
+
[
Ĝ(jω)

]∗
QĜ(jω)

= R− − 2 Re
[
N∗−Ĝa(jω)

]
+
[
Ĝa(jω)

]∗
QĜa(jω).

Using (4.5), (3.4) and (4.3) we get the following result.
Lemma 4.4. Π is coercive iff the Popov spectral function for (3.1),

π(jω) := R+ 2 Re [N∗ĝ(jω)] + [ĝ(jω)]∗Qĝ(jω)

is coercive.
Theorem 4.5. Let A generates an EXS C0-semigroup {S(t)}t≥0, C and D are
admissible, ĝ ∈ H∞(C+,L(U,Y)), and π is coercive then both LQ problems (3.1), (4.4)
and (4.1), (4.4) as well as (2.14) are solvable.
If, in addition, the semigroup {etA−1}t≥0 is uniformly bounded then G,

G := −D∗HcA+N−C, GA−1 ∈ L(H,Y)

is admissible with respect to the semigroup {S(t)}t≥0 and π has a spectral factorization

π(jω) = [φ(jω)]∗φ(jω), φ(s) = R
1/2
− + sR

−1/2
− G(sI −A)−1D,

φ, φ−1 ∈ H∞(C+,L(U,Y)).
Next, if moreover, G extends from D(A) to GΛ with domain D(GΛ) such that R(D) ⊂
D(GΛ), GΛD ∈ L(U) and R−+GΛD is boundedly invertible then the closed-loop operator
in optimally driven reciprocal system: A−1 + DR−1

− GA−1 ∈ L(H) has a generally
unbounded inverse:

Acv = A
[
v −D (R− + GΛD)−1 GΛv

]
,

D(Ac) =
{
v ∈ D(GΛ) : v −D (R− + GΛD)−1 GΛv ∈ D(A)

} (4.7)

and
uc = − (R− + GΛD)−1 GΛx

c. (4.8)
Finally, if in addition, D∗A∗ extends from D(A∗) to D# with domain D(D#) such
that R(G) ⊂ D(D#) and D#GR

1/2
− = (GΛD)∗. Then the closed-loop state operator

(4.7) generates an EXS C0-semigroup on H.
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Proof. By Lemmas 4.2, 4.3 and 4.4, and because of equivalences (4.6), the first claim
immediately follows from Theorem 2.4/(i).

By the additional assumption, the semigroup {etA}t≥0, etA = etA
−1 is uniformly

bounded whilst EXS of {S(t)}t≥0 clearly implies that σ(A)∩ jR = {0}, whence (2.16)
holds; actually 0 ∈ σc(A), where σc(A) denotes the continuous spectrum of A. By
Theorem 2.4 (ii) the operator G∗ is admissible with respect to {etA−1}t≥0. Since,
by (4.6),

G = −D∗HcA+N−C = (B∗H−NC)A = R1/2G∗A, (4.9)

one can apply Lemma 4.2 with C and H replaced by R−1/2G and G, respectively to
conclude that G is admissible with respect to {S(t)}t≥0.

Next,
Θ(s) = R1/2 −G∗(sI −A)−1B

factorizes Π(jω), but this holds iff

φ(s) = Θ(s−1) = R1/2 −G∗
(
s−1I −A

)−1 B

= R1/2 −G∗
[(
−s−1A

) (
−A−1 + sI

)]−1 B

= R
1/2
− + sG∗A(sI −A)−1D = R

1/2
− + sR

−1/2
− G(sI −A)−1D

factorizes π(jω) = Π(−jω−1). Since Θ, Θ−1 ∈ H∞(C+; L(U)), the same holds
for φ and φ−1.

It follows from Theorem 2.4 that the optimal feedback controller equation for the
reciprocal system is given by (2.11) which here reads, again due to (4.6), as

uca = −R−1
−
[
D∗Hc −N−CA−1]xca =⇒ ûa

c(s) = −R−1
−
[
D∗Hc −N−CA−1] x̂a

c(s).

Thus applying the Hankel transform and (4.2) we conclude that the optimal controller
for the system (3.1) is implicitly defined by

ûc(s) = −R−1
− G [x̂c(s) +Dûc(s)] . (4.10)

Since
sA−1x̂c(s)−A−1x0 = x̂c(s) +Dûc(s), (4.11)

then (4.10) can be written as

ûc(s) = −sR−1
− GA−1x̂c(s) +R−1

− GA−1x0.

Inserting this expression into (4.11) one obtains

s(A−1 +DR−1
− GA−1)x̂c(s)− x̂c(s) = (A−1 +DR−1

− GA−1)x0, (4.12)

where A−1 + DR−1
− GA−1 ∈ L(H) is the closed-loop state operator of the optimally

driven reciprocal system. Indeed, making use of (4.6) and (4.9), we get

Ac = A + BR−1/2G∗ = A−1 +DR−1
− (R1/2

− G∗) = A−1 +DR−1
− GA−1.



The LQ/KYP problem for infinite-dimensional systems 45

To find its inverse Ac = (Ac)−1 we have to consider the equation

A−1x+DR−1
− GA−1x = v ∈ D(Ac).

Since G extends from D(A) to GΛ with domain D(GΛ) such that R(D) ⊂ D(GΛ),
GΛD ∈ L(U), then v ∈ D(GΛ) and

(R− + GΛD)R−1
− GA−1x = GΛv.

But R− + GΛD is boundedly invertible and therefore we have

R−1
− GA−1x = (R− + GΛD)−1 GΛv.

Hence
A−1x = v −D (R− + GΛD)−1 GΛv ∈ D(A)

and we come to (4.7).
Because Ac :=

(
A−1 +DR−1

− GA−1)−1, (4.12) shows that x̂c satisfies the resolvent
equation for Ac, whence x̂c is an analytic extension of the resolvent

(sI −Ac)−1 = 1
s

(A−1 +DR−1
− GA−1)

[
(A−1 +DR−1

− GA−1)− 1
s
I

]−1

from the semicircle |s| < ‖A−1 + DR−1
− GA−1‖L(H), s ∈ C+ onto C+. Thus Ac is

the unique candidate to be a state operator of the closed-loop (optimally controlled)
system ẋc(t) = Acxc(t). Now comparing (4.7) with (3.1) we get (4.8).

To prove the last statement let us invoke Theorem 3.8 with (compare (4.7)
with (3.1)):

Y = U, K = (R− + GΛD)−1 ∈ L(U), C = GΛ ⇔ H∗ = R
1/2
− G∗.

Thus ĝ has to be replaced by ĝΛ,

ĝΛ(s) := sG(sI −A)−1D − GΛD = R− + sG(sI −A)−1D − (R− + GΛD)

= R
1/2
− φ(s)− (R− + GΛD) =⇒ ĝΛ ∈ H∞(C+,L(U)),

(4.13)

whence

I +KĝΛ(s) = I + (R− + GΛD)−1 [sG(sI −A)−1D − GΛD
]

= (R− + GΛD)−1 [R− + sG(sI −A)−1D
]

= (R− + GΛD)−1R
1/2
− φ(s) =⇒ (I +KĝΛ)−1 ∈ H∞(C+,L(U)).

By Theorem 3.8, the operator Ac defined by (3.6), here coinciding with the operator
Ac defined by (4.7), generates an EXS semigroup.
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5. APPLICATION TO LUR’E EQUATIONS

5.1. SOLVABILITY OF LUR’E EQUATIONS: THE CASE OF DIRECT CONTROL

Consider an infinite-dimensional direct control system in factor form

ẋ(t) = A
{
x(t)− df

[
c#x(t)

]}
(5.1)

where A : (D(A) ⊂ H) −→ H generates a linear EXS C0-semigroup {S(t)}t≥0 on H,
d ∈ D(c#) is a factor control vector, f : R −→ R is a generally nonlinear function
describing the static characteristic of a feedback controller and c# is A-bounded linear
functional, h ∈ H, h∗ := c#A−1,

The directional derivative of a quadratic form V (x) = x∗Hx dictated by H ∈ L(H),
H = H∗ at x ∈ H in the direction of the RHS of (5.1), i.e.,

Afx := A[x− df(c#x)], D(Af ) = {x ∈ D(c#) : x− df(c#x) ∈ D(A)}

reads as
V ′(x;Afx) = 〈A(x− df),Hx〉H + 〈Hx,A(x− df)〉H.

By definition of Af , x ∈ D(c#) and x− df(c#x), must be of the form x− df(c#x) =
A−1w for some w ∈ H. Thus

V ′(x;Afx) = 〈w,H(A−1w + df)〉H + 〈H(A−1w + df), w〉H.

Assume that f(0) = 0 and f satisfies the sector condition

k1 <
f(y)
y

< k2 ⇐⇒ [k2y − f(y)] [f(y)− k1y] > 0, y 6= 0.

Since

[k2y − f(y)] [f(y)− k1y] =
[
k2c

#x− f(c#x)
] [
f(c#x)− k1c

#x
]

=
[
k2h
∗w − (1− k2c

#d)f
] [

(1− k1c
#d)f − k1h

∗w
]
,

then adding and subtracting [k2y − f(y)] [f(y)− k1y] yields

V ′(x;Afx)

=
[
w∗

f

] [
HA−1 + (A−1)∗H− qhh∗ Hd− eh

d∗H− eh∗ −δ

] [
w
f

]

− [k2y − f(y)] [f(y)− k1y] ,

where

δ := (1− k1c
#d)(1− k2c

#d) ≥ 0, q := k1k2, e := −k1 + k2
2 + k1k2c

#d.



The LQ/KYP problem for infinite-dimensional systems 47

Problem 5.1 (Kalman-Yacubovich-Popov (KYP) problem I). Find real constants k1
and k2 > k1 such that with the Lur’e system

{ (
A−1)∗H + HA−1 − qhh∗=−GG∗

−Hd+ eh=−
√
δG

}
(5.2)

has a solution (H,G), H ∈ L(H), H = H∗ ≥ 0, G ∈ H.

If the above infinite-dimensional version of the Kalman-Yacubovich-Popov (KYP)
problem has a solution then

V ′(x;Afx) = − [k2y − f(y)] [f(y)− k1y]−
[
G∗w −

√
δf(c#x)

]2
≤ 0.

Thus if, in addition, for any initial condition x(0) = x0 ∈ D(Af ) the abstract
differential equation (5.1) has an absolutely continuous (strong) solution x = x(t)
for t ≥ 0 then, d

dtV [x(t)] = V ′(x;Afx(t)) ≤ 0 for almost all t ≥ 0 and V will be
a Lyapunov functional for (5.1). If only existence of a weak solution is known one
can approximate it by a sequence of strong solution using density arguments and
continuity of V – see [9] for more details.

Putting: A = A−1,B = d,C = h∗; Q = q,N = e,R = δ in Theorem 2.4 we
conclude that if:

(L1) {etA−1}t≥0 is uniformly bounded,
(L2) h∗ is admissible,
(L3) Ĝ ∈ H∞(C+), where Ĝ(s) = h∗

(
sI −A−1)−1

d and
(L4) for some η > 0 there holds

Π(jw) := R + 2 Re[N∗Ĝ(jw)] + [Ĝ(jw)]∗QĜ(jw)
= δ + 2eRe[Ĝ(jw)] + q|Ĝ(jw)|2 ≥ η, w 6= 0,

(5.3)

then, there exists a solution (H,G) to (5.2) and the Popov spectral function Π has
a spectral factorization Π(jω)| = |Θ(jω)|2, Θ,Θ−1 ∈ H∞(C+),

Θ(s) = R1/2 −G∗(sI −A)−1B =
√
δ −G∗(sI −A−1)−1d

=
√
δ + s−1G∗A(s−1I −A)−1d.

Moreover, if q ≤ 0 then, recalling (2.21), one obtains

H := Ψ∗
[
(QF + N)R−1(F∗Q + N∗)−Q

]
Ψ

= Ψ∗
[
(qF + eI)R−1(qF∗ + eI)− qI

]
Ψ ≥ 0.

By EXS of {S(t)}t≥0, there holds σ(A) ∩ jR = {0} and 0 ∈ σC(A) because A has
an unbounded but densely defined inverse A; thus (2.15) and (2.16) are met.

Conditions (L2)–(L4) can be expressed in terms of the original system (5.1), and
the transformed conditions are usually easier to check:

(L2) holds iff c# is admissible with respect to {S(t)}t≥0 (Lemma 4.2).
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(L3) holds iff ĝ ∈ H∞(C+), ĝ(s) = sc#(sI −A)−1d− c#d is the transfer function
of the linear part of (5.1) (Lemma 4.3).

Finally (L4) holds as (5.3) reduces to frequency-domain inequality of the circle
criterion - type (Lemma 4.4),

Π(jw) = δ + 2eRe
[
Ĝ(jw)

]
+ q

∣∣∣Ĝ(jw)
∣∣∣
2
≥ η ∀w 6= 0

w=1/ω︷ ︸︸ ︷⇐⇒ π(jω) := δ − 2eRe
[
ĝ(jω) + c#d

]
+ q

∣∣ĝ(jω) + c#d
∣∣2

= 1 + (k1 + k2) Re [ĝ(jω)] + k1k2 |ĝ(jω)|2 ≥ η ∀ω ∈ R,

(5.4)

which, in the case where q < 0, means geometrically that the Nyquist plot {ĝ(jω)}ω∈R
is strictly inside the ball with center − 1

2 (k−1
2 + k−1

1 ) and radius 1
2 (k−1

2 − k−1
1 ).

5.2. EXAMPLE: HEATING OF A ROD

The dynamics of a plant, depicted in Figure 2 is governed by the controlled heat
equation with observation





qt(θ, t) = aqθθ(θ, t)−Raq(θ, t), t ≥ 0, 0 ≤ θ ≤ 1
qθ(1, t) = 0, t ≥ 0,
qθ(0, t) =u(t), t ≥ 0,

y(t) = q(1, t), t ≥ 0,





where q(θ, t) stands for the temperature at point θ and at time t, a is the thermal
diffusivity and Ra is the heat exchange coefficient between the rod and its outside.
Here the control servomechanism is a heater which steers the temperature gradient at
the left end while the output is temperature measurement by a sensor located at the
right end.

-
0 1

θ

Heated rod

u(t)-

qθ(0, t)

-y(t)

q(1, t)

-

-
-

6 ?

Fig. 2. The heating of a rod system

In the Hilbert space H = L2(0, 1) with standard scalar product, the open-loop
system dynamics can be written in the preliminary abstract form





ẋ=σx
τx=u
y= c#x



 (5.5)
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with
σx = ax′′ −Rax, D(σ) =

{
x ∈ H2(0, 1) : x′(1) = 0

}
,

τx = x′(0), D(τ) = C1[0, 1] ⊃ D(σ)

and σ is a closed linear operator; the observation functional c# is given by

c#x = x(1), D(c#) = C[0, 1].

From the relationships: d ∈ D(σ), σd = 0, τd = −1 we find a factor control vector d,




d′′(θ)− µd(θ) = 0
d′(1) = 0
d′(0) = 1



 ⇐⇒ d(θ) =

cosh√µ(1− θ)
√
µ sinh√µ , θ ∈ [0, 1]; µ := Ra

a
.

Thanks to this

τ [x(t) + du(t)] = τx(t) + τdu(t) = τx(t)− u(t) = 0,

i.e., x(t) = du(t) ∈ ker τ . Next,

ẋ(t) = σx(t) = σx(t) + σdu(t) = σ[x(t) + du(t)] = A[x(t) + du(t)],

provided that A := σ|ker τ , here given by

Ax = ax′′ −Rax, D(A) = {x ∈ H2(0, 1) : x′(1) = 0, x′(0) = 0}.

Consequently, c#
∣∣
D(A) = h∗A, where H = h,





h′′(θ)− µh(θ) = 0
h′(1) =−1/a
h′(0) = 0



 ⇐⇒ h(θ) = − cosh√µθ

a
√
µ sinh√µ, θ ∈ [0, 1],

and (5.5) is being reduced to (3.1) with C = c#, H = h and D = d.
Since A = A∗ ≤ −RaI it generates an analytic EXS self-adjoint semigroup

{S(t)}t≥0 on H. A−1 is a compact operator, whence, by the discrete version of spectral
theorem, A has countably many eigenvalues, namely:

λ0 = −Ra, λk = −ak2π2 −Ra, k ∈ N

and the corresponding sequence of eigenvectors

e0 = 1, ek =
√

2 cos kπθ, k ∈ N

forms an orthonormal basis (ONB) of H.
Passing to the question of solvability of Problem 5.1, we observe that (L1) holds as

‖etA−1
x0‖2H =

∞∑

n=0
e−2t/λn |〈x0, ek〉|2H ≤

∞∑

n=0
|〈x0, ek〉|2H = ‖x0‖2H, x0 ∈ H. (5.6)
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In fact we have more, by the Weierstrass test the first series in (5.6) uniformly
converges to ‖etA−1

x0‖2H on [0,∞) and because Reλn < 0 (n = 0, 1, 2, . . .) its partial
sums treated as function of t belong to BUC0[0,∞), whence ‖e(·)A−1

x0‖2H is also
in BUC0[0,∞).

Next,

c#e0 = 1, c#ek =
√

2(−1)k, k ∈ N

and because

f ∈ L2(0,∞) ⇐⇒ f̂ ∈ H2(C+) =⇒
√

2 Re s |f̂(s)| ≤ ‖f‖L2(0,∞),

for any f ∈ L2(0,∞) we have

∞∑

k=0
|c#ek|2|f̂(−λk)|2 = |f̂(−λ0)|2 + 2

∞∑

k=1
f̂(−λk)|2

≤ 1
2Ra
‖f‖2L2(0,∞) +

∞∑

k=1

1
ak2π2 +Ra

‖f‖2L2(0,∞)

≤ 1
2Ra
‖f‖2L2(0,∞) + 1

a

∞∑

k=1

1
k2π2 ‖f‖

2
L2(0,∞) ≤ max

{
1
Ra

,
1
3a

}
‖f‖2L2(0,∞).

Hence c# is an admissible observation functional by the spectral criterion of admissi-
bility [5] and the bibliography therein; (L2) is satisfied.

Similar arguments shows that d#,

d#x = −ax(0), D(d#) = C[0, 1],

an extension of d∗A is an admissible observation functional, whence by Lemma 3.4,
d is an admissible factor control vector, where now

d#e0 = −a, d#ek = −a
√

2, k ∈ N.

Here, the transfer function equals

ĝ(s) = sc#(sI −A)−1d− c#d = − 1√
s+Ra
a

sinh
√
s+Ra
a

.
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This formula has been found using Maple-aided manipulations and can be easily
confirmed by the fractional expansion of z 7→ π

sinhπz [12, Problem 5.2.5 with
z = 1

π

√
s+Ra
a ]:

1√
s+Ra
a

sinh
√
s+Ra
a

= 2
∞∑

k=1

(−1)ka
(aπ2k2 +Ra) + s

+ a

s+Ra

= 2
∞∑

k=1

(−1)ka
s− λk

+ a

s− λ0

= −
∞∑

k=1

d#ekc
#ek

s− λk
− d#e0c

#e0
s− λ0

= −c#A(sI −A)−1d = −ĝ(s).

From this expansion and that of z 7→ π coth πz [12, Problem 5.2.5, with z = 1
π

√
µ]

we get

|ĝ(s)| ≤ a

|s+Ra|
+
∞∑

k=1

2a
|(aπ2k2 +Ra) + s|

≤ a

Ra
+
∞∑

k=1

2a
aπ2k2 +Ra

=
coth√µ
√
µ

, s ∈ C+,

i.e., (3.5) is met, and (L3) holds true.
For a laboratory model the constants have been identified as

a = 0.00092054875946, Ra = 0.02719439502498 =⇒ µ = 29.54150417;

the corresponding circle-type frequency-domain inequality (5.4) is graphically verified
in Figures 3, 4 which, with an aid of numerical computations, yields: (L4) is met for

k1 = −897.56 < 0, 0 < k2 = 623.24 < −1/Ĝ(0) = 623.2461689.

By the result of Section 5.1, Problem 5.1 with those k1 and k2, has a desired solution,
i.e., there exists (H,G), H ∈ L(H), H = H∗ ≥ 0, G ∈ H solving (5.2) in which

R = δ = 0.00002415247812 > 0, q = −559395.2944 < 0, e = −760.3911159.

We shall give a modal approximation of this solution.
Recall that the mapping, induced by ONB {ek}k∈Z∗ of eigenvectors of A,

H 3 x 7−→ x∞ ∈ `2(Z∗), x∞ := [e∗kx]k∈Z∗ , Z∗ := {0} ∪ N,

is a unitary isomorphism of H onto `2(Z∗). In particular,

h∞ := [e∗kh]k∈Z∗ =





1
λ0

if k = 0

(−1)k
√

2
λk

if k ∈ N




.
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Fig. 3. Graphical verification of the circle
criterion (5.4)

Fig. 4. Graphical verification of (5.4):
π(jω) > 0.0000092

d∞ := [e∗kd]k∈Z∗ =





−a
λ0

if k = 0

−a
√

2
λk

if k ∈ N




, G∞ = [e∗kG]k∈Z∗ .

Under the isomorphism above the infinite-matrix representationsA−1
∞ , H∞ ∈ L(`2(Z∗))

of operators A−1 and H ∈ L(H) are, respectively:

A−1
∞ := diag

{
1
λ1
,

1
λ2
, . . .

}
, H∞ = [e∗kHen]k,n∈Z∗ = H∗∞.

Premultiplying and postmultiplying the first equation of (5.2) by, respectively, e∗k and
en and then premultiplying the second equation of (5.2) by e∗k and expanding d with
respect to the basis {ek}k∈Z∗ we get

{ (
A−1
∞
)∗H∞ + H∞A−1

∞ = qh∞h∗∞ −G∞G∗∞
−H∞d∞ + eh∞=−

√
δG∞

}
.

It is not difficult to see that truncations

HN := [e∗kHen]k,n=1,2,...N , GN := [e∗kG]Nk=1

of H∞ and G∞ satisfy the matrix Lur’e system
{ A−1

N HN + HNA−1
N = qhNh

∗
N −GNG∗N

−HNdN + ehN = −
√
δGN

}
, (5.7)

where A−1
N , dN and hN are the truncations of A−1

∞ , d∞ and h∞:

A−1
N := diag

{
1
λ1
,

1
λ2
, . . . ,

1
λN

,

}
, dN = [e∗kd]Nk=1 , hN = [e∗kh]Nk=1 .
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(5.7) can be solved numerically using care.m procedure built in Matlab/Control
Toolbox.

Theorem 5.2. A solution (H,G) of the Lur’e system (5.2), the existence of which is
guaranteed by Theorem 2.4, has the following regularity properties:

(i) G ∈ D(A3/4−ε), whence in particular the Fourier expansion

G(θ) =
∞∑

k=0
G∗ek ek(θ), 0 ≤ θ ≤ 1,

uniformly converges to G; ε ∈ [0, 3
4 ).

(ii) H is a nuclear Hilbert-Schmidt operator given by

(Hx)(θ) =
1∫

0

k(θ, σ)x(σ)dσ, x ∈ H, (5.8)

with a symmetric kernel k ∈ L2((0, 1)× (0, 1)).

Proof. Since c# is admissible, then the observability gramian Hh = Ψ∗Ψ ∈ L(H),
Hh = H∗h ≥ 0, Hh satisfies the (equivalent) Lyapunov operator equations:

〈Ax,Hhx〉H + 〈x,HhAx〉H = −(c#x)2, x ∈ D(A),
(A−1)∗Hh + Hh(A−1) = −hh∗.

H can be represented as H = HG − qHh, where HG ∈ L(H), HG = H∗G ≥ 0, and the
pair (HG,G) solves the system

{ (
A−1)∗HG + HG(A−1) = −GG∗

−HGd+ (qHhd+ eh) = −
√
δG

}
. (5.9)

Observe that

q〈d,Hhek〉H = q〈d,Ψ∗Ψek〉H = q〈Ψd,Ψek〉L2(0,∞)

= q
〈
Ψd, c#eke

λk(·)
〉

L2(0,∞)
= q

〈
Ψd, h∗ekλke

λk(·)
〉

L2(0,∞)

= −qh∗ek (−λk)
(
Ψ̂d
)

(−λk) = −qh∗ek
[
ĝ(−λk) + c#d

]
.

(5.10)

From Theorem 4.5 we know that G∗A is admissible with respect to {S(t)}t≥0. Therefore
HG = Ψ∗GΨG, where ΨG denotes its observability map, (ΨG|D(A) x)(t) := G∗AS(t)x.
Now

−〈d,HGek〉H = −〈d,Ψ∗GΨGek〉H = −
〈
ΨGd,G∗ekλkeλk(·)

〉
L2(0,∞)

= G∗ek (−λk)(Ψ̂Gd)(−λk) = G∗ek
[
φ(−λk)−

√
δ
]
.

(5.11)



54 Piotr Grabowski

The last equality holds as, still by Theorem 4.5, φ(s) =
√
δ + sG∗A(sI − A)−1d is

a spectral factor of the (coercive) Popov spectral function π satisfying φ, 1
φ ∈ H∞(C+).

It follows from the second equation of (5.9), (5.10) and (5.11) that

−
√
δG∗ek = −d∗HGek + qd∗Hhek + eh∗ek

= G∗ek
[
φ(−λk)−

√
δ
]
− qh∗ek

[
ĝ(−λk) + c#d

]
+ eh∗ek,

whence by φ, 1/φ ∈ H∞ and qc#d− e = k1 + k2
2 = −137.16,

G∗ek = qĝ(−λk) + [qc#d− e]
φ(−λk) h∗ek. (5.12)

Hence (third inequality below holds as ĝ increases for s > 0)

|G∗ek| ≤ m |h∗ek| , m :=
∥∥∥∥

1
φ

∥∥∥∥
H∞(C+)

[
|q| ‖ĝ‖H∞(C+) +

∣∣∣k1 + k2
2

∣∣∣
]
,

|h∗ek| ≤ |G∗ek|
1
|q| ‖φ‖H∞(C+)

∣∣∣∣ĝ(−λk) + 1
2

[
1
k1

+ 1
k2

]∣∣∣∣
−1
,

1
2

[ 1
k1

+ 1
k2

]
+ ĝ(−λk) ≥ 1

2

[
1
k1

+ 1
k2

]
+ ĝ(Ra) > 0.0001

and the sequences {G∗ek}k∈Z∗ , {h∗ek}k∈Z∗ have the same asymptotic behaviour up
to a nonzero constant. Thus G ∈ D[(−A)3/4−ε], because

h ∈ D[(−A)3/4−ε] ⇐⇒
∞∑

k=0
|λk|3/2−2ε |h∗ek|2 <∞,

where ε is an arbitrary small positive number.
To examine regularity of H we observe that

∞∑

n=0
‖Ψen‖2L2(0,∞) =

∞∑

n=0
‖eλn(·)c#en‖2L2(0,∞) =

∞∑

n=0

1
−λn

<∞,

and similarly, with aid of the estimate after (5.12),

∞∑

n=0
‖ΨGen‖2L2(0,∞) =

∞∑

n=0
‖eλn(·)G∗Aen‖2L2(0,∞)

= m2
∞∑

n=0
‖eλn(·)‖2L2(0,∞) |λkh∗ek|2 ≤ m2

∞∑

n=0

1
−λn

<∞.
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Hence Ψ,ΨG are Hilbert-Schmidt operators. Consequently Ψ∗,Ψ∗G ∈
L(L2(0,∞),H) are Hilbert-Schmidt operators [20, Theorem 6.9, p. 136]. Next, applying
[20, Corollary, p. 138] and [16, Proposition 1.10, p.11] we conclude that Hh = Ψ∗Ψ
and HG = Ψ∗GΨG are nuclear (or trace) Hilbert-Schmidt operators. Finally H is a
nuclear Hilbert-Schmidt operator as a linear combination of Hh and HG. In particular
this implies [20, Theorem 6.11, p. 139] that H is an integral operator (5.8) with
a symmetric kernel k ∈ L2((0, 1)2).

By Theorem 5.2 (i), the linear functional

x 7−→ R1/2G∗Ax =
√
δ〈Ax,G〉H = −

√
δ〈(−A)1/4+εx, (−A)3/4−εG〉H

extends to a bounded linear functional GΛ on D[(−A)1/4+ε], but d ∈ D[(−A)3/4−ε] ⊂
D[(−A)1/4+ε]; the inclusion holds for ε ≤ 1

4 .
Similarly, the functional

x 7−→ 〈Ax, d〉H = −〈(−A)1/4+εx, (−A)3/4−εd〉H

extends to a bounded linear functional d# on D[(−A)1/4+ε], but G ∈ D[(−A)3/4−ε] ⊂
D[(−A)1/4+ε]; the inclusion holds for ε ≤ 1

4 . Thus, taking ε = 1
4 one obtains

d#GR1/2 = G
√
δ

= −
√
δ〈(−A)1/2G, (−A)1/2d〉H

= −
√
δ〈(−A)1/2d, (−A)1/2G〉H = GΛd.

Hence the transfer function of optimal control system (4.13) reads as

ĝΛ(s) = sR
1/2
− G∗A(sI −A)−1d− GΛd

=
√
δ〈[I − s(sI −A)−1](−A)1/2d, (−A)1/2G〉H.

s = Re±jϕ =⇒ [s(sI−A)−1−I](−A)1/2d = [R(RI−e∓jϕA)−1−I](−A)1/2d (5.13)

If ϕ ∈ (0, π2 ] then, by [2, Proposition 3.9.1 and Remark 3.9.3, pp. 171–172],
e∓jϕA generate bounded C0-semigroups, whence the RHS of (5.13) tends to 0 as
R→∞ and consequently ĝΛ(s) −→ 0 as |s| → ∞, Re s ≥ 0. Analogous arguments ap-
ply to ĝ as well, giving ĝ(s) −→ 0 as |s| → ∞, Re s ≥ 0 and π(∓j∞) = |φ(∓j∞)|2 = 1.
Taking this into account in (4.13) we conclude that R− + GΛd 6= 0. All assumptions of
Theorem 4.5 hold and by its assertion the semigroup generated by Ac is EXS.

5.3. NUMERICAL EXPERIMENT

For k1 = −897.56 and k2 = 623.24 a simple m-script has been written and executed
under Matlab to calculate N = 100-dimensional truncation G100 of G∞. The care.m
procedure from Matlab/Control Toolbox was used to find G100 and H100. Having
an access to G100 we can approximate G using GT

NeN (·).
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The result of computations are depicted in Figures 5, 6 and 7: the Fourier expansions
of h, d and G are uniformly convergent. G is satisfactory approximated. The spectra
of the open-loop and closed-loop systems are depicted in Figure 8. The closed-loop
(optimal) system has approximately 20 pairs of complex eigenvalues which means that
the optimal process is of oscillatory type.
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Fig. 8. Spectra of open (◦)/closed (∗)-loop
systems

Since
x∗Hx =

∞∑

m=0

∞∑

n=0
x∗emH∞e∗mx = x∗

∞∑

m=0

∞∑

n=0
emH∞e∗mx,

then comparing the last term with (5.8) we obtain

k(θ, σ) =




e1(θ)
e2(θ)
. . .

em(θ)
. . .




T

H∞




e1(σ)
e2(σ)
. . .
en(σ)
. . .




(5.14)
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in almost all points of the square [0, 1]2, but one cannot expect that k is bounded
as confirmed by Figure 9.
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Fig. 9. Plot of the kernel k approximated with the aid of (5.14)

Numerical algorithms going beyond Matlab are recently discussed in [13] and
references therein.

5.4. SOLVABILITY OF LUR’E EQUATIONS:
CASE OF THE INDIRECT CONTROL

Consider an infinite-dimensional indirect control system in factor form
{
ẋ(t) = A{x(t) + df [σ(t)]}
σ̇(t) = c#x(t)− ρf [σ(t)]

}
, (5.15)

where A, d, f , c# and h are as in Section 5.1, ρ+c#d > 0. Repeating, with appropriate
modifications the analysis of Section 5.1, we can represent the directional derivative
of a functional (compare with [11, p. 201] where the case H = Rn was examined)

V (x, σ) = x∗Hx+ 1
2(ρ+ c#d) [σ − h∗x]2 + q

σ∫

0

f(ξ)dξ
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in the direction of the RHS of (5.15) as

V ′
([

x
σ

]
;
[
A(x+ df)
c#x− ρf

])

= 〈w,H(A−1w − df)〉H + 〈H(A−1w − df), w〉H
− σf + h∗(A−1w − df)f + qf

[
c#(A−1w − df)− ρf

]
.

Assume that f(0) = 0 and f satisfies the sector condition

0 < f(σ)
σ

< k ≤ ∞ ⇐⇒
[
σ − 1

k
f(σ)

]
f(σ) > 0, y 6= 0.

Adding and subtracting 1
kf

2(σ) we get

V ′
([
x
σ

]
;
[
A(x+ df)
c#x− ρf

])

= −
[
σ − 1

k
f(σ)

]
f(σ)

+
[
w∗

f

] [
H(A−1)∗ +A−∗H −Hd+ 1

2 [A−1 + qI]∗h
−d∗H + 1

2h
∗[A−1 + qI] −δ

] [
w
f

]
,

where
δ := 1

k
+ h∗d+ q(ρ+ c#d) ≥ 0.

Problem 5.3 (Kalman-Yacubovich-Popov (KYP) problem II). Find real constants
k > 0 and q ≥ 0 such that the Lur’e system

{
HA−1 +

(
A−1)∗H = −GG∗

−Hd+ 1
2 [A−1 + qI]∗h= −

√
δ G

}
(5.16)

has a solution (H,G), G ∈ H, H ∈ L(H), H = H∗ ≥ 0.

Putting: A = A−1,B = d,C = h∗(A−1+qI); Q = 0,N = 1
2 ,R = δ in Theorem 2.4,

we conclude from its statement, that if:
– s 7→ h∗

(
sI −A−1)−1

x0 is in H2(C+) for every x0 ∈ H or, equivalently s 7→
c#(sI −A)−1x0 is in H2(C+) for every x0 ∈ H;

– Ĝ ∈ H∞(C+), where

Ĝ(s) = −q[ĝ(s−1) + c#d]− s−1h∗(s−1I −A)−1d

= −q[ĝ(s−1) + c#d]− [c#(s−1I −A)−1d+ h∗d]
= −(q + s)[ĝ(s−1) + c#d]− h∗d

or, equivalently ĝ ∈ H∞(C+), because EXS and s 7→ c#(sI −A)−1x0 ∈ H2(C+) for
every x0 ∈ H implies by Lemma 3.2 that s 7→ c#(sI −A)−1x0 ∈ H∞(C+) for every
x0 ∈ H;
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– for some η > 0 there holds

Π(jω) = R + 2 Re
[
N∗Ĝ(jω)

]
+
[
Ĝ(jω)

]∗
QĜ(jω)

= δ + Re
[
Ĝ(jω)

]
≥ η, ω 6= 0,

(5.17)

then, there exists a solution (H,G) to (5.2). Here (5.17) reduces to

1
k
− Re

[
(1 + jωq) ĝ(jω)− ρ

jω

]
≥ η > 0, ω ∈ R. (5.18)

Moreover, recalling (2.21), one obtains

H := Ψ∗
[
(QF + N)R−1(F∗Q + N∗)−Q

]
Ψ = 1

4 Ψ∗R−1Ψ ≥ 0.

We can see that again conditions of solvability of the Lur’e system (5.16) can be
formulated in the language of the original system (5.15).

Introducing X (jω) = Re ĝ(jω) and Y(jω) := Im ĝ(jω)
ω

we can see that (5.18) holds
iff the parametric curve R 3 ω 7−→ (X (jω),Y(jω)) is located strictly to the left of the

straight line Y =
(

1
k

+ ρ

)
− qX .

6. DISCUSSION

REMARKS ON ASSUMPTIONS

As concerns (2.15) notice that A is a dissipative operator in an equivalent scalar
product of H iff A = A−1 is a dissipative operator in the same scalar product. Therefore
{etA−1}t≥0 is uniformly bounded if A is a dissipative operator in an equivalent scalar
product of H.

If (2.15) is satisfied then (2.16) holds iff limt→∞ ‖AetA‖L(H) = 0. This equiv-
alence in is due to [2, Theorem 4.4.16, p. 284]. If this condition is satisfied then
limt→∞ ‖etAAf‖H = 0 for every f ∈ H, i.e., the origin strongly attracts trajectories
starting from the range R(A) of A. Thus, if R(A) = H then the origin attracts
trajectories starting from a dense subset of H which, jointly with (2.15) implies that
the semigroup {etA}t≥0 is strongly asymptotically stable, i.e., limt→∞ ‖etAf‖H = 0 for
every f ∈ H.

In particular, this holds when A = A−1 and A generates an EXS C0-semigroup
{S(t)}t≥0 on H.

The arguments above indicate that if {S(t)}t≥0 is EXS then it is reasonable to
assume that {etA−1}t≥0 is strongly asymptotically stable. Such an assumption has
been made in [15] and the results on the LQ problem derived therein are applicable to
the reciprocal system as announced in [8] and fully applied in [9].
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RECIPROCALITY APPROACH

The reciprocality approach has been developed in [4, especially Theorem 4.5, p. 1695].
It was noticed therein that the LQ problem (3.1)–(4.4) is equivalent to a control
problem for its reciprocal system (4.1)–(4.5). Next, the general theory of the LQ
problem presented in [21] (see also [6]) was applied to get a new simplified Riccati
characterization of the optimal control/controller in terms of bounded operators only.

In the present paper we derived a solution to the LQ problem for infinite-dimensional
systems in factor form using the results of Section 2.4, which is a reversed approach in
comparison with the results of [4], i.e., we derived the general theory of LQ problem
with unbounded operators starting from the LQ theory for bounded operators only.

WEISS’ DEFINITION OF GΛ

A possible extension GΛ of G has been proposed in [21]:

GΛx := lim
s→∞,s∈R

sG(sI −A)−1x,

D(GΛ) = {x ∈ H : there exists lim
s→∞,s∈R

sG(sI −A)−1x}.

Since sG(sI −A)−1x = sR1/2G∗A(sI −A)−1x, then by the well-known fact

lim
s→∞,s∈R

sA(sI −A)−1x = Ax, x ∈ D(A),

where sA(sI − A)−1 ∈ L(H) is called the Yosida approximation of A, there holds
GΛx = Gx for x ∈ D(A), i.e., GΛ extends G from D(A) onto D(GΛ).

Next,

R(D) ⊂ D(GΛ)

⇐⇒ ∀v ∈ U : lim
s→∞,s∈R

sG(sI −A)−1Dv = GΛDv = lim
s→∞,s∈R

R
1/2
− φ(s)v −R−v

⇐⇒ lim
s→∞,s∈R

φ(s)v = R
−1/2
− (R− + GΛD)v

and if the last limit exists then, by [20, Theorem 4.23(a), p. 75], one has: R− + GΛD ∈
L(U). Now, if R− + GΛD is boundedly invertible then in the terminology of [21,
Definition 12.1, p. 319]: φ is a regular spectral factor. It is known [21, Proposition 12.3,
p. 319] that in this case φ−1(s)f tends to (R− + GΛD)−1R

1/2
− f as s→∞, s ∈ R. To

verify that our theory is consistent with that of [21] we shall prove that the latter is
true. Indeed,

R
−1/2
− G∗Acx = R−1

− R
1/2
− G∗A[x−D(R− + GΛD)−1GΛx]

= R−1
− G[x−D(R− + GΛD)−1GΛx],

whence R−1/2
− G∗Ac extends to

R−1
− [I − GΛD(R− + GΛD)−1]GΛx = (R− + GΛD)−1GΛx.
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Now, it follows from (2.18) with appropriate substitutions that

lim
s→0,s∈R

Θ−1(s)v = [I − (R− + GΛD)−1GΛD]R−1/2
− v = (R− + GΛD)−1R

1/2
− v

= lim
s→∞,s∈R

φ(s)v := φ(∞)v, v ∈ U.

On the other side (2.17) yields

lim
s→0,s∈R

Θ(s)v = R
1/2
− v +R

−1/2
− GΛDvR−1/2

− (R− + GΛD)v

= lim
s→∞,s∈R

φ−1(s)v := φ−1(∞), v ∈ U.

It should be emphasized that usually it is enough to define GΛ on a certain domain
intermediate between D(A) and D(GΛ) – see examples given in [6].

Introducing FΛ := R
−1/2
− GΛ we can represent the spectral factor φ and the optimal

feedback controller u as:

φ(s) = (R1/2
− + FΛD) + FΛA(sI −A)−1D, (6.1)

uc = −
[
(R− + GΛD)−1R

1/2
−
]
FΛx

c = −φ−1(∞)FΛx
c. (6.2)

SPECTRAL FACTORIZATION METHOD

Substituting a general form of FΛ : H −→ U into (6.1) we can determine, if possi-
ble, its particular form using the identity φ(jω)∗φ(jω) = Π(jω) and the condition
φ−1 ∈ H∞(C+,L(U)); the optimal controller is then uniquely given by (6.2). This
method of finding the optimal controller could be recommended when dim U <∞.

THE CASE OF EXS IN THEOREM 2.4

Notice that if {etA}t≥0 is EXS then in Theorem 2.4: C is admissible, Ĝ ∈
H∞(C+; L(U,Y)), {etA}t≥0 is uniformly bounded and (2.16) is satisfied. Consequently
its assertions (i), (ii) are met if (2.10) holds. Furthermore, {etAc}t≥0 is EXS too.
Indeed, in (2.25): ûc ∈ H2(C+,U), (sI −A)−1x0 ∈ H2(C+,H) for every x0 ∈ H and
(sI −A)−1 ∈ H∞(C+; L(H)), which yields (sI −Ac)−1x0 ∈ H2(C+,H). Now EXS
follows from the Paley-Wiener and Datko theorems. The concept of stabilizability we
shall introduce below enable us to reduce a general system (2.1) to this particularly
simple case.

Definition 6.1. The pair (A,B) is exponentially stabilizable if there exists F ∈ L(H,U)
such that the semigroup etÃ, Ã := A + BF is EXS.

If (A,B) is exponentially stabilizable then for any Z = Z∗ ∈ L(H) there exists
a unique W = W∗ ∈ L(H), W ≥ 0 namely W :=

∫∞
0 etÃ

∗ZetÃdt such that

Ã∗W + WÃ = −Z.
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Consider W corresponding to Z := C∗QC + F∗RF + F∗N∗C + C∗NF and let
L := WB + C∗N + F∗R. Then Popov’s transformations:

0 ≤ H̃ = H + W, G̃ = G− F∗R1/2

reduce (2.14) to its canonical form
{

Ã∗H̃ + H̃Ã = −G̃G̃∗
−H̃B + L = −G̃R1/2

}
. (6.3)

Replacing (A,H,C,Q,G,N) by (Ã, H̃, I, 0, G̃,L), we conclude from Theorem 2.4
that (6.3) has a solution (H̃, G̃), H̃ ≥ 0, provided that

Π(jω) := R + 2 Re[L∗(jωI − Ã)−1B]

is coercive, i.e., 1
2R + L∗(sI − Ã)−1B is strictly positive real.

It should be stressed that the assumption that {etA}t≥0 is EXS is very restrictive
and it mainly concerns the case of a finite dimensional spaces H, U and Y though in
a recently published report [14] (collecting earlier author’s results) this case is in a way
regarded as a starting point to discuss the general systems with unbounded state,
output and observation operators.

STANDARD LQ PROBLEM

This problem corresponds to Q ≥ 0 and N = 0 in (2.2) and is the most classical lq
problem. Let C be admissible and Ĝ ∈ H∞(C+,L(U,Y)) as required in Theorem 2.4,
where Π(jω) = R + [Ĝ(jω)]∗QĜ(jω). Then we have Hc ≥ 0 because here the
performance index J(x0,u) ≥ 0 for all x0 ∈ H and u ∈ L2(0,∞; U). The operator
Riccati equation takes a simplified form:

A∗Hc +HcA + C∗QC−HcBR−1B∗Hc = 0. (6.4)

In some cases U = H and B is boundedly invertible. Then (6.4) can be solved using
Shubert’s idea originally proposed for matrices [19]; (6.4) can equivalently be written
as:

S∗S = A∗B−1R(B−1)∗A + C∗QC ≥ 0,
and S is being selected in such a way that the LHS of

(B−1)∗R1/2S + (B−1)∗R(B−1)∗A = Hc

is a self-adjoint and nonnegative operator.

LINEAR VIZ NONLINEAR THEORY OF SECTION 4

Stability sector (k1, k2) for a nonlinear feedback control obtained for the Example of
Section 5.2 is significantly smaller than the so-called Hurwitz sector ensuring stability
in the case of a linear feedback – see [7] for detailed presentation of the linear theory.
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