Identyfikatory
Warianty tytułu
Języki publikacji
Abstrakty
To this day, most of the papers related to hybrid joints were focused on single and double lap joints in which shear deformation and degradation was the dominant phenomenon. However, in real constructions, complex state of loads can be created by: a) torsion with shear, b) bending with shear, c) torsion with tensile. Analytical and numerical computation for simple mechanical joints is known, however, the introduction of an adhesive layer to this joint makes the load transferred both through: (1) the adhesive and (2) mechanical fasteners. There is also an interaction between the amount and stiffness of mechanical fasteners and the strength of the adhesive layer. The paper presents the results of numerical calculations for the bending with shear type of load for the hybrid structural joint and corresponding simple joints by: (1) pure adhesion and (2) rivets with different quantity maintaining the same cross-sectional area. A total of 9 simulations were performed for: (1) 4 types of pure rivets connections, (2) pure adhesive joint and (3) 4 kinds of hybrid joints. The surface-based cohesive behavior was used for creation of the adhesive layer, whereas the rivets were modelled by connector type fasteners, which simplify complexity of the numerical model. The use of connectors allowed for effort assessment taking into account damage in both types of connections. Application of connector elements can be useful for larger structures modelling, e.g. aircraft fuselage, where the number of mechanical joints is significant and complex load conditions occur.
Słowa kluczowe
Wydawca
Czasopismo
Rocznik
Tom
Strony
1263--1268
Opis fizyczny
Bibliogr. 44 poz., rys., tab.
Twórcy
autor
- Lublin University of Technology, Department of Solid Mechanics, 40 Nadbystrzycka Str., 20-618 Lublin, Poland
autor
- Lublin University of Technology, Department of Solid Mechanics, 40 Nadbystrzycka Str., 20-618 Lublin, Poland
autor
- Lublin University of Technology, Department of Solid Mechanics, 40 Nadbystrzycka Str., 20-618 Lublin, Poland
Bibliografia
- [1] E. F. Karachalios, R. D. Adams, L.F.M. da Silva, Int. Jour. of Adh. & Adh. 45, 69-76 (2013).
- [2] L.D.R. Grant, R. D. Adams, L.F.M. da Silva, Int. Jour. of Adh. & Adh. 29, 535-542 (2009).
- [3] E. F. Karachalios, R. D. Adams, L.F.M. da Silva, Int. Jour. of Adh. & Adh. 43, 81-95 (2013).
- [4] E. F. Karachalios, R. D. Adams, L.F.M. da Silva, Int. Jour. of Adh. & Adh. 43, 96-108 (2013).
- [5] E. F. Karachalios, R. D. Adams, L.F.M. da Silva, Jour. of Adh. Sci. and Tech. 27, 1811-1827 (2013).
- [6] F. Moroni, A. Pirondi, C. Pernechele, A. Gaita, L. Vescovi, Frac. and Struc. Int. 47, 294-302 (2019).
- [7] F. Moroni and A. Pirondi, Adv. Struct. Mat. 6, 79-108 (2011).
- [8] T. Sadowski, P. Golewski, Key Eng. Mater. 607, 49-54 (2014).
- [9] T. Sadowski, P. Golewski, Arch. of Metall. and Mater. 58, 581-587 (2013).
- [10] P. Golewski, T. Sadowski, Int. Jour. of Adh. and Adh. 77, 174-182 (2017).
- [11] T. Sadowski, M. Nowicki, D. Pietras, P. Golewski. Inter. Jour. of Adh. and Adh., 89, 72-81 (2019).
- [12] T. Sadowski, P. Golewski, M. Kneć, Comp. Struc. 112, 66-77 (2014).
- [13] T. Sadowski, M. Kneć, P. Golewski, (2014) Key Eng. Mater. 601, 25-28 (2014).
- [14] T. Balawender, T. Sadowski, P. Golewski, Comp. Mat. Sc. 64, 270-272 (2012).
- [15] T. Sadowski, T. Balawender, Adv. Struct. Mat. 6, 149-176 (2011).
- [16] T. Sadowski, P. Golewski, V. Radoiu, Solid State Phen. 254, 1-7 (2016).
- [17] P. Golewski, T. Sadowski, IOP Conf. Ser.: Mater. Sci. Eng. 416, 1-6 (2018).
- [18] P. Lacki, A. Derlatka, Comp. Struct. 159, 491-497 (2017).
- [19] P. Lacki, K. Adamus, Comp. and Struc. 89, 977-985 (2011).
- [20] P. Lacki, J. Niemiro, Comp. Struc. 159, 538-547 (2017).
- [21] K. Adamus, J. Adamus, J. Lacki, Comp. Struc. 202, 95-101 (2018).
- [22] P. Lacki, A. Derlatka, Comp. Struc. 202, 201-209 (2018).
- [23] P. Lacki, J. Nawrot, A. Derlatka, J. Winowiecka, Comp. Struc. 211, 244-253 (2019).
- [24] T. Balawender, Acta Metall. Slov. 24, 1, 58-64 (2018).
- [25] J. Cao, J.L. Grenestedt, Comp. Part A 35, 1091-1105 (2004).
- [26] M. P. Cavatorta, D. S. Paolino, L. Peroni, M. Rodino, Comp. Part A 38, 1251-1261 (2007).
- [27] J. P. Kabche, V. Caccese, K. A. Berube, R. Bragg, Comp. Part B 38, 66-78 (2007).
- [28] V. Caccese, J. P. Kabche, K. A. Berube, Comp. Struct. 81, 450-462 (2007).
- [29] Z. Kapidzic, L. Nilsson, H. Ansell, Comp. Struct. 109, 198-210 (2014).
- [30] K. Zhang, D. Shi, W. Wang, Q. Wang, Comp. Struct. 160, 1198-1204 (2017).
- [31] J. H. Oh, Comp. Sci. and Tech. 67, 1340-1347 (2007).
- [32] T. Sadowski, M. Nowicki. IOP Conf. Ser.: Mater. Sci. Eng. 416, 1-7 (2018).
- [33] A. Pirondi, D. Fersini, E. Perotti, F. Moroni. Atti del Congresso IGF, 19, 85-93 (2007).
- [34] T. Sadowski, L. Marsavina, Comput. Mater. Sci. 50, 1336-1346 (2011).
- [35] T. Sadowski, Comput. Mater. Sci. 64, 209-211 (2012).
- [36] V. Burlayenko, H. Altenbach, T. Sadowski, S. D. Dimitrova, Comput. Mater. Sci. 116, 11-21 (2016).
- [37] T. Sadowski, L. Marsavina, N. Peride, E. M. Craciun, Comput. Mat. Sci. 46, 687-693 (2009).
- [38] T. Sadowski, J. Bęc, Comput. Mat. Sci. 50, 1269-1275 (2011).
- [39] H. Dębski, T. Sadowski, Comput. Mater. Sci. 83, 403-411 (2014).
- [40] J. Gajewski, T. Sadowski, Comput. Mat. Sci. 82, 114-117 (2014).
- [41] M. Birsan, T. Sadowski, L. Marsavina, D. Pietras, Int. J. Solids Struct. 50, 519-530 (2013).
- [42] G. Golewski, T. Sadowski, Const & Build. Mat. 51, 207-214 (2014).
- [43] T. Sadowski, Mech. Mat. 18, 1-16 (1994).
- [44] V. Burlayenko, T. Sadowski, Comput. Mat. Sci. 52, 212-216 (2012).
Uwagi
EN
1. This work was financially supported by Ministry of Science and Higher Education (Poland) within the statutory research number S/20/2019.
PL
2. Opracowanie rekordu w ramach umowy 509/P-DUN/2018 ze środków MNiSW przeznaczonych na działalność upowszechniającą naukę (2019).
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-4999730a-dcf6-4c07-81a5-7478f193dd6c