PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

Mapping Environmental Impacts in North-Western Algeria through Multivariate Spatio-Temporal Analysis Using Remote Sensing and Geographic Information System

Treść / Zawartość
Identyfikatory
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
The interactions between the normalised difference vegetation index (NDVI), the normalised difference built-up index (NDBI), and land surface temperature (LST) are complex. The assessment of land use/land cover (LULC) changes in the North-western region of Algeria between 1995 and 2021 confirms the direct influence of these factors on surface thermal processes. The use of new information technologies, particularly remote sensing coupled with GIS, favourably contributes to the processing of a large volume of data and to the use of specific methods aimed at confirming and/or disproving the hypotheses put forward. The application of LULC classification methods clearly highlights the magnitude of transformations, predominantly in favour of intensified urbanisation over the past two decades. Indeed, agricultural lands have experienced a reduction of 17.45%, while urbanised areas have nearly doubled. This phenomenon can, in part, be attributed to the mass migration of populations from inland areas to the coast, not only due to climate change: secondary for political problems between 1990 and 2001. Similarly, barren lands have increased by 10.45%. These changes have real implications for ecosystems (mainly loss of biodiversity) and the climate (pollution, GHG emissions, and rising ambient temperatures). The estimation of average LST from multiple satellite scenes reveals an increasing trend, rising from 36.6 °C in 1995 to 40.35 °C in 2021. The direct relationship between LST and NDVI and between LST and NDBI confirms the close association between land use change and increasing surface temperatures. The Pearson coefficient between LST and NDVI showed a negative correlation, ranging between -0.52 and -0.47, while it was positively correlated between LST and NDBI, with values around 0.66. The emergence of hotspots in the region, confirmed by the results of analysis employing the Getis-Ord G* method, is marked by clearly increasing spatial envelopes. This phenomenon is associated with a distinct reduction in vegetation cover density, coupled with an increased vulnerability to drought conditions. These initial results argue in favour of preserving green and blue networks and, more largely, ecosystems.
Twórcy
autor
  • Civil and Environmental Engineering Laboratory (LGCE), Hydraulic Department, Faculty of Technology, University of Djillali Liabès, 22000 Sidi Bel Abbes, Algeria
  • Civil and Environmental Engineering Laboratory (LGCE), Hydraulic Department, Faculty of Technology, University of Djillali Liabès, 22000 Sidi Bel Abbes, Algeria
  • Civil and Environmental Engineering Laboratory (LGCE), Hydraulic Department, Faculty of Technology, University of Djillali Liabès, 22000 Sidi Bel Abbes, Algeria
  • CEDETE Laboratory EA 1210, University of Orleans, 10 Rue de Tours, 45069 Orléans, France
Bibliografia
  • 1. Abdulmana, S., Lim, A., Wongsai, S., Wongsai, N. 2021. Land surface temperature and vegetation cover changes and their relationships in Taiwan from 2000 to 2020. Remote Sens. Appl. Soc. Environ. 24, 100636. https://doi.org/10.1016/j.rsase.2021.100636
  • 2. Akhsin, W., Nur, B., Fariz, T.R. 2024. Built-Up Development Prediction Based on Cellular Automata Modelling Around New Yogyakarta International Airport. Ecol. Eng. Environ. Technol. 25, 238–250. https://doi.org/10.12912/27197050/175138
  • 3. Al-Hafiz, B., Musy, M., Hasan, T. 2017. A study on the impact of changes in the materials reflection coefficient for achieving sustainable urban design. Procedia Environ. Sci. 38, 562–570. https://doi.org/10.1016/j.proenv.2017.03.126
  • 4. Alademomi, A.S., Okolie, C.J., Daramola, O.E., Akinnusi, S.A., Adediran, E., Olanrewaju, H.O., Alabi, A.O., Salami, T.J., Odumosu, J. 2022. The interrelationship between LST, NDVI, NDBI, and land cover change in a section of Lagos metropolis, Nigeria. Appl. Geomatics 14, 299–314. https://doi.org/10.1007/s12518-022-00446-y
  • 5. Aredehey, G., Mezgebu, A., Girma, A. 2018. Land-use land-cover classification analysis of Giba catchment using hyper temporal MODIS NDVI satellite images. Int. J. Remote Sens. 39, 810–821. https://doi.org/10.1080/01431161.2017.1392639
  • 6. Atayi, J., Kabo-Bah, A., Akpoti, K. 2016. The effects of large-scale mining on land use and land cover changes using remotely sensed data 1. Int. J. Sci. Nat. 7, 724–733.
  • 7. Ayad, N.A., Ayad, A.A., Khalidi, K., El, Habib, A., Charif, A. 2023. Remote Sensing and Meteorological Indexes of Drought Using Open Short Time-Series Data in Doukkala Region , Morocco. Ecol. Eng. Environ. Technol. Technol. 24, 1–10. https://doi.org/10.12912/27197050/156962
  • 8. Bentchakal, M., Medjerab, A., Chibane, B., Rahmani, S.E.A. 2021. Meteorological drought and remote sensing data: An approach to assess fire risks in the Algerian forest. Model. Earth Syst. Environ. 1–12. https://doi.org/10.1007/s40808-021-01323-0
  • 9. Bhatti, S.S., Tripathi, N.K. 2014. Built-up area extraction using Landsat 8 OLI imagery. GIScience Remote Sens. 51, 445–467. https://doi.org/10.1080/15481603.2014.939539
  • 10. Edan, M.H., Maarouf, R.M., Hasson, J. 2021. Predicting the impacts of land use/land cover change on land surface temperature using remote sensing approach in Al Kut, Iraq. Phys. Chem. Earth 123, 103012. https://doi.org/10.1016/j.pce.2021.103012
  • 11. Fayech, D., Tarhouni, J. 2021. Climate variability and its effect on normalized difference vegetation index (NDVI) using remote sensing in semi-arid area. Model. Earth Syst. Environ. 7, 1667–1682. https://doi.org/10.1007/s40808-020-00896-6
  • 12. Feizizadeh, B., Omarzadeh, D., Kazemi Garajeh, M., Lakes, T., Blaschke, T. 2023. Machine learning data-driven approaches for land use/cover mapping and trend analysis using Google Earth Engine. J. Environ. Plan. Manag. 66, 665–697. https://doi.org/10.1080/09640568.2021.2001317
  • 13. Ferrelli, F., Huamantinco Cisneros, M.A., Delgado, A.L., Piccolo, M.C. 2018. Spatial and temporal analysis of the LST-NDVI relationship for the study of land cover changes and their contribution to urban planning in Monte Hermoso, Argentina. https://doi.org/10.5565/rev/dag.355
  • 14. Ghobadi, Y., Pradhan, B., Shafri, H.Z.M., Kabiri, K. 2015. Assessment of spatial relationship between land surface temperature and landuse/cover retrieval from multi-temporal remote sensing data in South Karkheh Sub-basin, Iran. Arab. J. Geosci. 8, 525– 537. https://doi.org/10.1007/s12517-013-1244-3
  • 15. Guha, S., Govil, H., Gill, N., Dey, A. 2021. A long-term seasonal analysis on the relationship between LST and NDBI using Landsat data. Quat. Int. 575, 249– 258. https://doi.org/10.1016/j.quaint.2020.06.041
  • 16. Hasan, M., Hassan, L., Al, M.A., Abualreesh, M.H., Idris, M.H., Kamal, A.H.M. 2022. Urban green space mediates spatiotemporal variation in land surface temperature: a case study of an urbanized city, Bangladesh. Environ. Sci. Pollut. Res. 29, 36376–36391. https://doi.org/10.1007/s11356-021-17480-9
  • 17. Hussain, S., Mubeen, M., Ahmad, A., Akram, W., Hammad, H.M., Ali, M., Masood, N., Amin, A., Farid, H.U., Sultana, S.R. 2020. Using GIS tools to detect the land use/land cover changes during forty years in Lodhran District of Pakistan. Environ. Sci. Pollut. Res. 27, 39676–39692. https://doi.org/10.1007/s11356-019-06072-3
  • 18. Hussain, S., Raza, A., Abdo, H.G., Mubeen, M., Tariq, A., Nasim, W., Majeed, M., Almohamad, H., Al Dughairi, A.A. 2023. Relation of land surface temperature with different vegetation indices using multi-temporal remote sensing data in Sahiwal region, Pakistan. Geosci. Lett. 10. https://doi.org/10.1186/s40562-023-00287-6
  • 19. IPCC. 2022. Climate Change 2022 - Mitigation of Climate Change - Full Report, Cambridge University Press.
  • 20. Jiang, L., Liu, Y., Wu, S., Yang, C. 2021. Analyzing ecological environment change and associated driving factors in China based on NDVI time series data. Ecol. Indic. 129, 107933. https://doi.org/10.1016/j.ecolind.2021.107933
  • 21. Keerthi Naidu, B.N., Chundeli, F.A. 2023. Assessing LULC changes and LST through NDVI and NDBI spatial indicators: a case of Bengaluru, India. GeoJournal 88, 4335–4350. https://doi.org/10.1007/s10708-023-10862-1
  • 22. Kumari, B., Tayyab, M., Shahfahad, Salman, Mallick, J., Khan, M.F., Rahman, A. 2018. Satellite-driven land surface temperature (LST) using Landsat 5, 7 (TM/ETM+ SLC) and Landsat 8 (OLI/TIRS) data and its association with built-up and green cover over urban Delhi, India. Remote Sens. Earth Syst. Sci. 1, 63–78. https://doi.org/10.1007/s41976-018-0004-2
  • 23. Lhissou, R., El Harti, A., Maimouni, S., Adiri, Z. 2020. Assessment of the image-based atmospheric correction of multispectral satellite images for geological mapping in arid and semi-arid regions. Remote Sens. Appl. Soc. Environ. 20, 100420. https://doi.org/10.1016/j.rsase.2020.100420
  • 24. Li, P., Wang, J., Liu, M., Xue, Z., Bagherzadeh, A. 2021. Spatio-temporal variation characteristics of NDVI and its response to climate on the Loess Plateau from 1985 to 2015. Catena 203, 105331. https://doi.org/10.1016/j.catena.2021.105331
  • 25. Li, S., Xu, L., Jing, Y., Yin, H., Li, X., Guan, X. 2021. International Journal of Applied Earth Observations and Geoinformation High-quality vegetation index product generation : A review of NDVI time series reconstruction techniques. Int. J. Appl. Earth Obs. Geoinf. 105, 102640. https://doi.org/10.1016/j.jag.2021.102640
  • 26. Macarof, P., Statescu, F. 2017. Comparasion of NDBI and NDVI as indicators of surface urban heat island effect in landsat 8 imagery: a case study of Iasi. Present Environ. Sustain. Dev. 141–150. https://doi.org/10.1515/pesd-2017-0032
  • 27. Malik, M.S., Shukla, J.P., Mishra, S. 2019. Relationship of LST, NDBI and NDVI using landsat-8 data in Kandaihimmat watershed, Hoshangabad, India. Indian J. Geo Mar. Sci.
  • 28. Masson-Delmotte, V.P., Zhai, P., Pirani, S.L., Connors, C., Péan, S., Berger, N., Caud, Y., Chen, L., Goldfarb, M.I., Scheel Monteiro, P.M. 2021. Ipcc, 2021: Summary for policymakers. in: Climate change 2021: The physical science basis. contribution of working group i to the sixth assessment report of the intergovernmental panel on climate change. https://doi.org/doi:10.1017/9781009157896.001
  • 29. Mehmood, M.S., Rehman, A., Sajjad, M., Song, J., Zafar, Z., Shiyan, Z., Yaochen, Q. 2023. Evaluating land use/cover change associations with urban surface temperature via machine learning and spatial modeling: Past trends and future simulations in Dera Ghazi Khan, Pakistan. Front. Ecol. Evol. 11, 1–16. https://doi.org/10.3389/fevo.2023.1115074
  • 30. Mosammam, H.M., Nia, J.T., Khani, H., Teymouri, A., Kazemi, M. 2017. Monitoring land use change and measuring urban sprawl based on its spatial forms: The case of Qom city. Egypt. J. Remote Sens. Sp. Sci. 20, 103–116. https://doi.org/10.1016/j.ejrs.2016.08.002
  • 31. Müller, L.M., Bahn, M. 2022. Drought legacies and ecosystem responses to subsequent drought. Glob. Chang. Biol. 28, 5086–5103. https://doi.org/10.1111/gcb.16270
  • 32. Naserikia, M., Asadi Shamsabadi, E., Rafieian, M., Leal Filho, W. 2019. The urban heat island in an urban context: A case study of Mashhad, Iran. Int. J. Environ. Res. Public Health 16, 313. https://doi.org/10.3390/ijerph1603031
  • 33. Njoku, E.A., Tenenbaum, D.E. 2022. Quantitative assessment of the relationship between land use/ land cover (LULC), topographic elevation and land surface temperature (LST) in Ilorin, Nigeria. Remote Sens. Appl. Soc. Environ. 27, 100780. https://doi.org/10.1016/j.rsase.2022.100780
  • 34. Policelli, F., Hubbard, A., Jung, H.C., Zaitchik, B., Ichoku, C. 2018. Lake Chad total surface water area as derived from land surface temperature and radar remote sensing data. Remote Sens. 10, 252. https://doi.org/10.3390/rs10020252
  • 35. Purwanto, Utomo, D.H., Kurniawan, B.R. 2016. Spatio Temporal Analysis Trend of Land Use and Land Cover Change Against Temperature Based on Remote Sensing Data in Malang City. Procedia - Soc. Behav. Sci. 227, 232–238. https://doi.org/10.1016/j.sbspro.2016.06.066
  • 36. Rani, N., Mandla, V.R., Singh, T. 2017. Evaluation of atmospheric corrections on hyperspectral data with special reference to mineral mapping. Geosci. Front. 8, 797–808. https://doi.org/10.1016/j.gsf.2016.06.004
  • 37. Rashid, K.J., Hoque, M.A., Esha, T.A., Rahman, M.A., Paul, A. 2021. Spatiotemporal changes of vegetation and land surface temperature in the refugee camps and its surrounding areas of Bangladesh after the Rohingya influx from Myanmar. Environ. Dev. Sustain. 23, 3562–3577. https://doi.org/10.1007/s10668-020-00733-x
  • 38. Renard, F., Alonso, L., Fitts, Y., Hadjiosif, A., Comby, J. 2019. Evaluation of the effect of urban redevelopment on surface urban heat islands. Remote Sens. 11, 299. https://doi.org/10.3390/rs11030299
  • 39. Rossi, F., Becker, G. 2019. Creating forest management units with Hot Spot Analysis (Getis-Ord Gi*) over a forest affected by mixed-severity fires. Aust. For. 82, 166–175. https://doi.org/10.1080/0004915 8.2019.1678714
  • 40. Roy, A., Inamdar, A.B. 2019. Multi-temporal Land Use Land Cover (LULC) change analysis of a dry semi-arid river basin in western India following a robust multi-sensor satellite image calibration strategy. Heliyon 5. https://doi.org/10.1016/j.heliyon.2019.e01478
  • 41. Santos, J.Y.G. dos, Montenegro, S.M.G.L., Silva, R.M. da, Santos, C.A.G., Quinn, N.W., Dantas, A.P.X., Ribeiro Neto, A. 2021. Modeling the impacts of future LULC and climate change on runoff and sediment yield in a strategic basin in the Caatinga/Atlantic forest ecotone of Brazil. Catena 203. https://doi.org/10.1016/j.catena.2021.105308
  • 42. Shahfahad, Kumari, B., Tayyab, M., Ahmed, I.A., Baig, M.R.I., Khan, M.F., Rahman, A. 2020. Longitudinal study of land surface temperature (LST) using mono-and split-window algorithms and its relationship with NDVI and NDBI over selected metro cities of India. Arab. J. Geosci. 13, 1–19. https://doi.org/10.1007/s12517-020-06068-1
  • 43. Sharma, R., Chakraborty, A., Joshi, P.K. 2015. Geospatial quantification and analysis of environmental changes in urbanizing city of Kolkata (India). Environ. Monit. Assess. 187, 1–12. https://doi.org/10.1007/s10661-014-4206-7
  • 44. Somayajula, V.K.A., Ghai, D., Kumar, S. 2021. Land Use/Land Cover Change Analysis using NDVI, PCA, In: 2021 5th International Conference on Computing Methodologies and Communication (ICCMC). IEEE, 849–855. https://doi.org/10.1109/ICCMC51019.2021.9418025
  • 45. Subhanil, G., Govil, H. 2021. Relationship between land surface temperature and normalized difference water index on various land surfaces: A seasonal analysis. Int. J. Eng. Geosci. 6, 165–173. https://doi.org/10.26833/ijeg.821730
  • 46. Sudhakar, C.V., Reddy, G.U. 2022. Land use Land cover change Assessment at Cement Industrial area using Landsat data-hybrid classification in part of YSR Kadapa District, Andhra Pradesh, India. Int. J. Intell. Syst. Appl. Eng. 10, 75–86. https://doi.org/10.18201/ijisae.2022.270
  • 47. Tayeb, S.T., Kheloufi, B. 2019. Spatio-temporal dynamics of vegetation cover in North-West Algeria using remote sensing data. Polish Cartogr. Rev. 51, 117–127. https://doi.org/10.2478/pcr-2019-0009
  • 48. Yang, J., Wang, Z.-H., Kaloush, K.E. 2015. Environmental impacts of reflective materials: Is high albedo a ‘silver bullet’for mitigating urban heat island? Renew. Sustain. Energy Rev. 47, 830–843. https://doi.org/10.1016/j.rser.2015.03.092
  • 49. Yin, S., Liu, J., Han, Z. 2022. Relationship between urban morphology and land surface temperature — A case study of Nanjing City. PLoS One 17, 1–17. https://doi.org/10.1371/journal.pone.0260205
  • 50. Yonaba, R., Koïta, M., Mounirou, L.A., Tazen, F., Queloz, P., Biaou, A.C., Niang, D., Zouré, C., Karambiri, H., Yacouba, H. 2021. Spatial and transient modelling of land use/land cover (LULC) dynamics in a Sahelian landscape under semi-arid climate in northern Burkina Faso. Land use policy 103, 105305. https://doi.org/10.1016/j.landusepol.2021.105305
  • 51. Zeng, J., Zhang, R., Qu, Y., Bento, V.A., Zhou, T., Lin, Y., Wu, X., Qi, J., Shui, W., Wang, Q. 2022. Improving the drought monitoring capability of VHI at the global scale via ensemble indices for various vegetation types from 2001 to 2018. Weather Clim. Extrem. 35, 100412.
  • 52. Zeren Cetin, I., Varol, T., Ozel, H.B., Sevik, H. 2023. The effects of climate on land use/cover: a case study in Turkey by using remote sensing data. Environ. Sci. Pollut. Res. 30, 5688–5699. https://doi.org/10.1007/s11356-022-22566-z
  • 53. Zhang, X., Wang, D., Hao, H., Zhang, F., Hu, Y. 2017. Effects of land use/cover changes and urban forest configuration on urban heat islands in a loess hilly region: case study based on Yan’an City, China. Int. J. Environ. Res. Public Health 14, 840. https://doi.org/10.3390/ijerph14080840
  • 54. Zheng, Y., Tang, L., Wang, H. 2021. An improved approach for monitoring urban built-up areas by combining NPP-VIIRS nighttime light, NDVI, NDWI, and NDBI. J. Clean. Prod. 328, 129488. https://doi.org/10.1016/j.jclepro.2021.129488
  • 55. Zhou, Y., Xiao, X., Zhang, G., Wagle, P., Bajgain, R., Dong, J., Jin, C., Basara, J.B., Anderson, M.C., Hain, C. 2017. Quantifying agricultural drought in tallgrass prairie region in the US Southern Great Plains through analysis of a water-related vegetation index from MODIS images. Agric. For. Meteorol. 246, 111–122. https://doi.org/10.1016/j.agrformet.2017.06.007
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-4998e940-112d-4f02-9c16-0eacdec3604f
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.