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INTRODUCTION

The last two decades (2001–2020) have wit-
nessed a marked increase in global surface temper-
atures (0.99 °C on average) (Masson-Delmotte et 
al., 2021). Forecasts for the end of this century in-
dicate a significant rise in these same temperatures, 
varying between 1.1 and 6.4 °C (IPCC, 2022). 
This climate warming has already profoundly al-
tered the structure and functioning of terrestrial 

ecosystems to varying degrees, creating heteroge-
neity on a global scale (Müller and Bahn 2022). 
More locally, in Algeria, the north-western region 
is situated in a transitional zone between an arid 
and semi-arid climate. This climatic situation di-
rectly exposes the region to the impacts of climate 
change. The thermal effects and associated pro-
cesses (evaporation, drought, low and/or intense 
but short-duration precipitation, etc.) highlight the 
high variability of temperatures across the territory. 
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ABSTRACT
The interactions between the normalised difference vegetation index (NDVI), the normalised difference built-up 
index (NDBI), and land surface temperature (LST) are complex. The assessment of land use/land cover (LULC) 
changes in the North-western region of Algeria between 1995 and 2021 confirms the direct influence of these fac-
tors on surface thermal processes. The use of new information technologies, particularly remote sensing coupled 
with GIS, favourably contributes to the processing of a large volume of data and to the use of specific methods 
aimed at confirming and/or disproving the hypotheses put forward. The application of LULC classification meth-
ods clearly highlights the magnitude of transformations, predominantly in favour of intensified urbanisation over 
the past two decades. Indeed, agricultural lands have experienced a reduction of 17.45%, while urbanised areas 
have nearly doubled. This phenomenon can, in part, be attributed to the mass migration of populations from inland 
areas to the coast, not only due to climate change: secondary for political problems between 1990 and 2001. Simi-
larly, barren lands have increased by 10.45%. These changes have real implications for ecosystems (mainly loss 
of biodiversity) and the climate (pollution, GHG emissions, and rising ambient temperatures). The estimation of 
average LST from multiple satellite scenes reveals an increasing trend, rising from 36.6 °C in 1995 to 40.35 °C in 
2021. The direct relationship between LST and NDVI and between LST and NDBI confirms the close association 
between land use change and increasing surface temperatures. The Pearson coefficient between LST and NDVI 
showed a negative correlation, ranging between -0.52 and -0.47, while it was positively correlated between LST 
and NDBI, with values around 0.66. The emergence of hotspots in the region, confirmed by the results of analysis 
employing the Getis-Ord G* method, is marked by clearly increasing spatial envelopes. This phenomenon is asso-
ciated with a distinct reduction in vegetation cover density, coupled with an increased vulnerability to drought con-
ditions. These initial results argue in favour of preserving green and blue networks and, more largely, ecosystems.
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The north-western region of the country is particu-
larly affected by extreme climatic events as well 
as prolonged periods of drought (Bentchakal et 
al., 2021). Accordingly, considerable economic 
and social challenges as well as stress on the natu-
ral environment are prevalent. In order to address 
these climate warming-related issues, the use of 
new information technologies (GIS, remote sens-
ing (RS)) has proven to be crucial for several rea-
sons, namely: the development of new land cover 
classification algorithms, the processing of large 
volumes of data (images, etc.), and the integration 
of thermal calculation methods within these GIS 
tools (Ghai and Kumar 2021). Satellite imagery, 
with its improved resolution, serves as an une-
quivocal barrier for monitoring temporal changes 
in numerous environmental parameters. Further-
more, it is now possible to obtain cost-effective 
and replicable synoptic coverage over large re-
gions (Atayi et al., 2016; Sudhakar and Reddy 
2022). The importance of RS and GIS in the spa-
tiotemporal monitoring of land in the Northwest 
of Algeria, particularly in the context of tracking 
land surface temperature (LST), normalised dif-
ference vegetation index (NDVI) and normalised 
difference built-up index (NDBI), is of paramount 
importance. These technologies offer valuable in-
formation on land cover changes, environmental 
dynamics and their interconnection with key indi-
ces (Keerthi Naidu and Chundeli 2023).

LST and NDVI are essential indicators for 
assessing climate change, acquiring climate 
trends and monitoring plant growth (Fayech and 
Tarhouni 2021; Malik et al., 2019; Naserikia et 
al., 2019).These two parameters serve as crucial 
indicators, making it possible to discern a wide 
range of environmental and terrestrial changes 
on a regional and global scale (Abdulmana et al., 
2021; S. Li et al., 2021). Thermal infrared (TIR) 
bands are used to identify the relationships be-
tween LST and NDVI using RS techniques (Gho-
badi et al., 2015; Hasan et al., 2022; Kumari et 
al., 2018). However, NDVI is commonly used to 
monitor the interaction between LST and vege-
tation, while NDBI is used to assess the degree 
of urbanisation (Bhatti and Tripathi 2014; Fer-
relli et al., 2018; Sharma et al., 2015; Zhang et 
al., 2017). Many studies have explored the com-
plex relationships between LST and established 
spatio-temporal correlations of indices (NDVI, 
NDBI) (Alademomi et al., 2022; Guha et al., 
2021; Keerthi Naidu and Chundeli 2023). The 
studies examining the relationship between LST 

and soil indices frequently reveal a positive cor-
relation between NDBI and LST and a negative 
association between NDVI and LST (Hasan et al., 
2022; Macarof and Statescu, 2017; Zheng et al., 
2021). Furthermore, in urban areas, some scien-
tists have observed a particularly strong negative 
correlation between NDVI and NDBI (Shahfahad 
et al., 2020; Zeren Cetin et al., 2023). The vegeta-
tion health index (VHI) is a remote sensing index 
used to monitor and assess the impact of drought 
on vegetation. VHI has been used in various stud-
ies to analyse drought and vegetation dynamics, 
making it a valuable tool for assessing vegetation 
health in different regions (Ayad et al., 2023)

Additionally, understanding the dynamics of 
LULC changes is crucial for effective urban plan-
ning and environmental management. By continu-
ally monitoring these changes, policymakers and 
urban planners can make informed decisions to 
mitigate the environmental impacts of urbanisation 
and promote sustainable development. This is par-
ticularly important given the irreversible effects of 
LULC changes on the environment, such as the in-
tensification of urban microclimates and associated 
implications for ecosystems (Policelli et al., 2018; 
Tayeb and Kheloufi 2019; Hussain et al., 2020). 
Multitemporal satellite images have been spar-
ingly employed in the planning and monitoring of 
LULC changes in semi-arid and arid environments 
(Roy and Inamdar 2019; Yonaba et al., 2021). 
However, effective LULC mapping is achieved 
through the use of satellite imagery that provides a 
broad spectrum of spatial and temporal resolutions 
(Aredehey et al., 2018; Akhsin et al., 2024). There 
is a complex relationship between LULC changes, 
LST and soil indices (Alademomi et al., 2022; Fer-
relli et al., 2018; Zhang et al., 2017).

To understand the physical processes that 
regulate and control the aforementioned factors, 
the objectives of this analysis were aimed at as-
sessing the complex dynamics and interrelation-
ships that exist among the environmental varia-
bles NDVI, NDBI, LST, and LULC using mul-
tispectral Landsat images. These may also be es-
sential for adaptation and remediation in the face 
of the impacts of climate change. The objectives 
are fivefold: (1) mapping and evaluating LULC 
change patterns over 26 years, (2) determining 
LST using Landsat thermal bands and spectral 
indices NDVI and NDBI, (3) mapping, analys-
ing, and detecting changes in LST, NDVI, and 
NDBI; (4) evaluating the correlation between 
LST, NDVI, and NDBI and their relationship 
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with changes in land cover; (5) identifying the 
regions particularly vulnerable to drought using 
GIS tools and NDVI-VHI indices, enabling tar-
geted mitigation and resource allocation.

Study area

Located in the north-western region of Al-
gerian territory (Figure 1), the study area fully 
encompasses two major watersheds: Tefna and 
Macta, situated in the Tlemcen and Sidi Bel Ab-
bès departments, respectively (Table 1). The 
climatic characteristics observed within the two 
watersheds are similar to the predominant cli-
mate in the Mediterranean region of North Af-
rica, characterised by a semi-arid climate pattern 
with rainfall in winter and drought conditions in 
summer. This distribution directly influences the 
availability of water in the watersheds, posing 
challenges for water resource management and 
the ecology of the region.

MATERIALS AND METHODS

Data collection and processing

Data sources are diverse and manifold, in-
volving both internal data generated by organisa-
tions located within the study area and external, 
often referred to as contextual data, produced by 
national and/or international entities. The first 
type of data was used to validate the results of 
calculations based on indirect acquisitions, while 
the second was used to highlight the regional and/
or global nature of thermal phenomena and elim-
inate scale effects.

The satellite data employed in this study orig-
inated from the LANDSAT 5 TM satellite mis-
sions (1995, 2000, 2005 and 2010), as well as 
LANDSAT 8 OLI (2015 and 2021). These images 
were acquired during the month of August (Table 
2). The scenes corresponding to these different 
time periods were downloaded from the USGS 

Figure 1. Location of study area

Table 1. Hydroclimatic characteristics of the catchment areas
Watershed Lat. Long. Area Perimeter Alt. Min Alt. Max. Kc

Tafna 34°47 35°10 -2°
1° 5335 437 100 1810 1.69

Macta 34° 28’ 35° 87’ 0° 52’
1° 2’ 14406 724 -10 1600 1.69
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database (Kumari et al., 2018). The choice of Au-
gust is based on the objective of obtaining satel-
lite imagery data of excellent quality to minimise 
the possible disturbances caused by atmospheric 
factors such as clouds. Table 2 describes the prin-
cipal characteristics of the images used.

Despite the selection of high-quality satellite 
images, atmospheric correction is a critical step 
in the preliminary processing of RS data. Its es-
sential role is to minimise or eliminate undesirable 
the atmospheric disturbances (atmospheric correc-
tions, especially for temporality) mentioned above, 
which is fundamental to ensuring that accurate 
information is obtained about the Earth’s surface 
(Lhissou et al., 2020). The FLAASH (fast line-of-
sight atmospheric analysis of spectral hypercubes) 
model was used for image pre-processing due to its 
capacity to correct the spectral properties of light 
over a broad range, covering from visible light to 
3 μm, including the near-infrared (NIR) and short-
wave infrared (SWIR) regions. This correction 

requires prior radiometric calibration of the image, 
along with contextual data (flight date, departure 
time, GMT, geographical position of the scene 
centre, sensor altitude, and ground elevation) (Rani 
et al., 2017). The reflectance values obtained will 
be used to calculate the various indices.

Remote sensing indicator

The NDVI and NDBI indices provide cru-
cial information on the distribution of vegetation 
and urban development, respectively. Together, 
NDVI and NDBI offer a valuable perspective on 
the interactions between natural ecosystems and 
urbanised areas and precise information on soil 
temperatures in particular and associated pro-
cesses (evaporation, infiltration, etc.) (Fayech 
and Tarhouni 2021; Guha et al., 2021). LST is 
an essential indicator, revealing climatic varia-
tions and eventual temperature increases (Fer-
relli et al., 2018; Kumari et al., 2018; Malik et 

Table 2. Properties of Landsat images used
Satellite Bands Band width (µm) Resolution (m) Dates

LANDSAT 5

Band 3 Red 0.63-0.69 30
28 August1995
09 August2000
23 August2005
05 August 2010

Band 4 NIR 0.76-0.9 30

Band 5 SWIR1 1.55-1.75 30

Band 6 SWIR 1 - 60

LANDSAT8

Band 4 Red 0.64-0.67 30

18 August2015
18 July 2021

Band 5 NIR 0.85-0.88 30

Band 6 SWIR 1 1.57-1.65 30

Band 10 TIR 1 10.6-11.19 100

Band 11 TIR 2 11.5-12.51 100

Table 3. Formula for calculating indices
Table 3. Formula for calculating indices

Indices Equation Description

NDVI 𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁 = (𝑁𝑁𝑁𝑁𝑁𝑁−𝑁𝑁𝑅𝑅𝑅𝑅)
(𝑁𝑁𝑁𝑁𝑁𝑁+𝑁𝑁𝑅𝑅𝑅𝑅) Eq. (1) where: NIR is the near infrared band and Red is 

the red band

NDBI 𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁 = 𝑆𝑆𝑆𝑆𝑁𝑁𝑁𝑁−𝑁𝑁𝑁𝑁𝑁𝑁
𝑆𝑆𝑆𝑆𝑁𝑁𝑁𝑁+𝑁𝑁𝑁𝑁𝑁𝑁  Eq. (2) SWIR: short-wave infrared bands, NIR: near 

infrared

VHI VHI=0.5×(VCI+TCI) Eq. (3) VCI = (NDVI - NDVImin) / (NDVImax - NDVImin)
TCI = (Tmax - T) / (Tmax - Tmin)

Steps in calculating LST:
1.Converting the satellite's 
digital number to Radiance
2.Conversion of radiance to 
sensor temperature
3.CalculatingEmissivity(ελ)

1.Lλ=ML×Qcal+AL-Oi Eq. (4)
Lλ: radiance, ML: multiplicative rescaling factor, 
Qcal: band 10 image, AL: additive image and Oi 

is the band 10 corrections

2.BT = K2/ln [(K1 / Lλ) + 1] - 273.15 
Eq. (5)

BT: brightness temperature, K1 and K2: the 
band-specific thermal conversion constants from 

the metadata, where: 𝐾𝐾1 = 774.883.09, 𝐾𝐾2 = 
1321.0789(Fabeku et al., 2018)

3.ελ = 0.004Pv + 0.986 Eq. (6)
Pv: proportion of vegetation (fraction of 

vegetation cover), based on a standardised 
NDVI value for each pixel

LST = BT / [1 + 𝜆𝜆 × (BT / ρ) × ln(ελ)] 
Eq. (7)

𝜆𝜆: wavelength of the emitted radiance (𝜆𝜆 = 11.5 
μm), ρ = 1.438 × 10¯² mK
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al., 2019). The vegetation health index (VHI) 
provides a comprehensive assessment of vege-
tation health and temperature conditions, and its 
valuable information on vegetation health and 
temperature conditions helps to assess and mon-
itor drought conditions (Zeng et al., 2022). VHI 
is a composite index that combines vegetation 
condition index (VCI) and temperature condition 
index (TCI) derived from satellite data. In the 
presented study, VHI can be useful for identify-
ing the regions vulnerable to drought.

Methodology

The calculation was carried out by taking 
the average of the data for all cloud-free pixels 
(0–5%) in August during the study period. This 
approach helps minimise any influence, from 
outliers or specific local conditions. To explore 
the relationship between the different parame-
ters analysed, the diagram (Figure 2) shows the 
approach applied in the conducted processing 
(Alademomi et al., 2022). LULC is calculated by 

the Google Earth Engine (GEE) platform and a 
JS script was developed to collect Landsat images 
comprising multiple bands. Complete coverage 
of the study area was provided by a mosaic of 5 
scenes (Feizizadeh et al., 2023). The LULC mod-
el is characterised by four classes: vegetated area 
(forest and agriculture), built-up area, bare land, 
and water bodies in the study area. The super-
vised classification schema were applied to tem-
poral satellite datasets for six years 1995, 2000, 
2005, 2010, 2015 and 2021, then exported from 
GEE to ArcGIS to generate the final maps.

Identifying signi�cant spatial 
clusters using Getis-Ord Gi* 

Analysis Getis-Ord Gi* statistics is a spatial 
statistical analysis method frequently used in 
spatial analysis and GIS in general. Its aim is to 
identify the places with a high (hot spots) or low 
(cold spots) concentration of data by aggregating 
observation points into polygons based on calcu-
lated distances. This approach generates Z scores 
(Gi scores) and P values (Gi P values) for each 

Figure 2. Methodological diagram used to calculate satellite indices
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entity, making it possible to determine wheth-
er they belong to a group of high or low values 
compared with their neighbouring entities (Rossi 
and Becker 2019). Applying the Getis-Ord Gi* 
statistics to the NDVI and LST datasets makes it 
possible to identify significant spatial groups and 
hotspots related to vegetation density and temper-
ature variations.

LULC and LST predictions for 2030 and 2050

The QGIS tool MOLUSCE and the cellular 
automata (CA) model are used to predict LULC 
and LST for the years 2030 and 2050. Two types 
of data are used to produce this prediction: depend-
ent variables, like changes in LULC and estimated 
LST using a transition matrix from Landsat images 
taken in 1995 and 2005; and independent variables, 
like NDVI and NDBI. Landsat images are scaled 
using average aggregation rules to make the spatial 
resolution more consistent. The resampling func-
tion in ArcGIS makes this process easier (Mehm-
ood et al., 2023). LST data are classified into six 
distinct temperature zones to provide an overview 
of temporal and spatial variations between LST 
zones. These zones are defined as very cold (<21.1 
°C), cold (21.1 – <23.1 °C), chilly (23.1 – <25.1 
°C), cool (25.1–27.1 °C), warm (27.1–29.1 °C); 
hot (29.1 – <31.1 °C) and very hot (> 31.1 °C) 
(Purwanto et al., 2016). After classification, each 
LST zone is superimposed on the LULC change 
maps, and LST variations are quantified using 
ArcGIS 10.8 “Tabulate Area” tool. The transition 
potential matrix is constructed using the above 
variables. During the prediction model training 
process, parameters such as the maximum itera-
tion (set at 1,000). When modelling the transition 
potential matrix using an artificial neural network, 
in particular a multilayer perceptron (MLP), the 
simulation step produces potential transition maps, 
a certitude function (of an experimental nature) 
and prediction results for years 2030 and 2050. 
To guarantee the model’s reliability in projecting 
the LULC and LST changes for a specified fore-
cast year, model validation is deemed necessary 
and carried out using current datasets (Edan et al., 
2021; Santos et al., 2021). Therefore, before pro-
jecting changes for 2030 and 2050, a rigorous accu-
racy assessment is carried out by simulating LULC 
and LST for the year 2021, and then comparing 
them with LULC and LST estimates for the same 
year. The QGIS-MOLUSCE validation module is 
used to calculate the overall kappa coefficients and 

percentage accuracy of the projected LULC and 
LST maps for year 2021. Once a satisfactory level 
of accuracy has been established, the model is ap-
plied to the final projection of LULC and LST for 
the forecast targets.

RESULTS AND DISCUSSION

Spatial detection of LULC changes

According to (Figures 3 and 4), the north-east-
ern part of the study area underwent rapid urbani-
sation between 1995 and 2021, resulting in a con-
siderable reduction in forest to the profit of urban 
areas. Only the south-western parts of the Tafna 
area have conserved a certain amount of vegeta-
tion. By 2010, the areas dedicated to agriculture 
and forests had decreased, resulting in an increase 
in bare soil of 10.45%. The year 2021 was marked 
by a significant change, with a notable decrease in 
agricultural areas of around 17.45%; this obser-
vation is the formal translation of a gradual aban-
donment of cultivated land in favour of urbanised 
areas for a large part and probably left fallow for 
a small part. These observations highlight the sig-
nificant changes in the spatial distribution of the 
various LULC classes in the study area. Rapid ur-
banisation has led to a reduction in green areas. In 
addition, the green zone, which includes natural 
areas and woodlands, recorded a very significant 
decrease over the study period, from 19.69% in 
1995 to 14.11% in 2010 (Figure 4).

A 10.34% reduction in agricultural land be-
tween 2015 and 2021 (Figure 4) in favour of ur-
ban areas and bare soil, representing a significant 
change in land use patterns. The water class saw a 
reduction of 11.31% over the same period, high-
lighting the severe and repeated droughts that 
have occurred over the last two decades. They 
indicate the potential deterioration of resources 
under the dual effect of pumping and surface 
withdrawals from water courses, leading to a 
low level of available stocks. At the same time, a 
significant increase of 8.63% in bare soil was re-
corded, caused by land clearance and/or linked to 
changes in land management practices. Urban ar-
eas, with a 13.97% increase in surface area, stand 
out clearly from the other themes, confirming 
continued and rapid urban expansion, resulting in 
urbanisation pressures and a substantial decrease 
in land. Forest areas show very clear fluctuations. 
In fact, there was a decrease between 1995 and 
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2010 (-4.66%), suggesting deforestation and/
or forest degradation (forest fires, cutting, etc.). 
Conversely, between 2010 and 2021, an increase 
in forest area of 2.30% indicates a recovery or 
stabilisation of forest cover because of the gov-
ernment’s policy of protecting and preserving the 
forest patrimony.

Analysis of changes to the LST

The spatial representation of LST reveals a 
distinct thermal zoning (Figure 5). The maximum 
temperatures recorded during the respective years 
(1995, 2000, 2005, 2010, 2015, and 2021) were 
49.56 °C, 50.28 °C, 47.39 °C, 54.17 °C, 40.22 °C, 

Figure 3. LULC maps for the study period

Figure 4. LULC areas of the different classes



49

Ecological Engineering & Environmental Technology 2024, 25(5), 42–60

and 49.86 °C, while the corresponding minimum 
temperatures were 12.36 °C, 18.38 °C, 15.64 °C, 
21.06 °C, 21.17 °C, and 23.67 °C. An analysis of 
the 26 year study period reveals an increase in 
the minimum ground temperature of 11.31°C, ac-
companied by a marginal increase of about 0.3 °C 
in the maximum temperature. Notable extremes 
were observed in 2010 and 2021, with the highest 
and lowest LST values reaching 54 °C and 12 °C, 
respectively. Urban areas displayed the highest 
temperatures, while vegetated zones exhibited the 
lowest temperatures. This situation is a result of 
unregulated urbanisation practices (soil sealing, 
lack of green and blue screens, a growing number 
of cars, water stress on plants, etc.). This pattern 
is evident in (Figure 5 and 6) suggesting a distinct 
relationship between the types of LULC and the 
distribution of LST.

Analysis of variation in NDVI and NDBI

The spatio-temporal distribution of NDVI 
and NDBI over the period 1995–2021 is present-
ed in (Figures 6 and 7). Figure 6 illustrates the 
average NDVI values for the study period. The 
derivation of NDVI in the north-western region 
of Algeria has revealed pronounced spatio-tem-
poral variability in vegetation. The south-western 
parts of Tefna and Macta show high NDVI values, 
indicating abundant vegetation cover, consisting 
essentially of forests. Regionally, there was a de-
crease in mean NDVI in 1995, while NDVI values 
substantially increased from 2000 to 2010. From 
2015 to 2021, the progression notably decreased, 
accompanied by a sharp decline in average NDVI 
values (Figures 4 and 6). The NDBI maps in (Fig-
ure 7) clearly highlight a significant increase in 

Table 4.The rate of change in LULC over the different periods
Transition rate of change in LULC (%)

Classes 1995–2000 2000–2005 2005–2010 2010–2015 2015–2021

Agriculture 1.41 0.85 -3.11 3.62 -10.34

Water 11.78 -13.22 10.88 1.47 -11.31

Bare land -1.21 -0.95 5.98 -5.88 8.63

Urban -8.12 4.73 9.19 -3.90 13.97

Forest -1.18 -0.82 -4.66 2.48 2.30

Figure 5. Spatial and temporal variation in LST over the period studied
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Figure 6. Spatiotemporal variation of NDVI during the study period

Figure 7. Spatial and temporal variation in NDBI over the period studied
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built-up areas at the expense of other land covers, 
such as vegetation, water bodies, and bare soil, 
over the entire period. It should be noted that some 
areas showed increasing NDBI values for years 
2000, 2005, 2010, 2015 and 2021, indicating a 
conversion of vegetated and arid lands into built-
up areas during these periods, which is reflected 
in the high NDBI values observed. In contrast, the 
same areas show NDBI values higher than 0.25 
for the year 1995, indicating stability in built-up 
areas and a high rate of bare land over this period. 
This indicates a clear expansion of built-up areas 
between 2000 and 2021 compared to 1995.

Relationship between LST and NDVI/NDBI

The results presented in (Table 5) highlight 
the regional landscape dynamics and the relation-
ships between NDVI, NDBI, and LST over time. 
The calculated mean NDVI experienced a notice-
able decrease from 0.23 in 1995 to 0.19 in 2021. 
Similarly, the calculated mean NDBI remained 
relatively stable, changing from 0.13 in 1995 to 
0.12 in 2021. Conversely, the LST has trended 
upward, with an average ranging from 36.61 °C 
in 1995 to 40.35 °C in 2021. Furthermore, LST 
exhibited interannual variability in conjunction 
with NDVI and NDBI. All tested relationships be-
tween NDVI, NDBI, and LST showed statistical 

significance with a p-value ≤0.0001, confirming 
the robustness of these associations. The adjusted 
R-value, which measures the proportion of vari-
ance in the dependent variable LST explained 
by the independent variables NDVI and NDBI, 
reached its highest value of 0.67 in 2010, indicat-
ing a relatively strong relationship between these 
factors (LST-NDBI). Conversely, the lowest ad-
justed R value of -0.26 was observed in 2000, 
suggesting a weaker relationship between LST 
and NDVI during that specific period.

Figure 7 presents the results of the linear re-
gression analysis on a sample of 1043 indepen-
dent observation points. These observations were 
collected to examine the correlation between 
LST and the normalised indices NDBI and NDVI 
on an interannual level. The regression analysis 
shows a positive association between LST and 
NDBI, while it is negative between LST and 
NDVI. The positive relationship between LST 
and NDBI (Figure 8a) implies that the areas 
with more built-up structures tend to have higher 
LST, as supported by the correlation coefficients 
indicated in (Table 5). This situation is a result 
of a combination of factors that do not comply 
with building standards as practiced in the most 
advanced countries in terms of climate (urban 
morphology, unsuitable materials, soil imperme-
ability, reduced green spaces, absence of water 

Table 5. Statistical analysis of LST and indices (NDVI, NDBI) and their relationship
Statistics of LST and Land Indices (NDVI, NDBI) Relationship between Land Indices and LST

Date Variables Minimum Maximum Mean Correlation with LST (R)

28/08/1995

LST 12.36 49.56 36.61 -

NDVI -1 0.864 0.23 -0.52

NDBI -1 0.99 0.13 0.66

09/08/2000

LST 18.38 50.28 37.72 -

NDVI -0.32 0.77 0.19 -0.26

NDBI -0.42 0.51 0.14 0.47

23/08/2005

LST 15.64 47.39 37.38 -

NDVI -1 0.87 0.20 -0.48

NDBI -1 1 0.12 0.55

05/08/2010

LST 21.06 54.17 40.18 -

NDVI -1 0.88 0.23 -0.55

NDBI -1 1 0.13 0.67

18/08/2015

LST 21.17 40.22 31.76 -

NDVI -0.38 0.86 0.22 -0.58

NDBI -0.56 0.57 0.09 0.6

18/07/2021

LST 23.67 49.86 40.35 -

NDVI -1 1 0.2 -0.47

NDBI -1 1 0.12 0.65
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features, etc.). Conversely, a significantly nega-
tive correlation is found between LST and NDVI, 
as illustrated in (Figure 8b), which confirms the 
hypotheses mentioned above. These findings con-
firm that the areas with denser vegetation cover 
generally have a lower LST.

Identi�cation of drought hot spots and 
cold spots using NDVI, LST and VHI

To study the intensity of the thermal field, a 
detailed analysis of hotspots (Figure 9a, 9b) was 

conducted using ArcGIS software with 90%, 
95%, and 99% confidence intervals. The results 
reveal distinct patterns of LST, characterised 
by high values (hotspots) and low values (cold 
spots), indicating increased and decreased tem-
perature variations (Figure 9a).The cold spots are 
primarily located in natural reserves, including 
forested areas, situated to the south and north-
west of Tafna, as well as in the central Macta re-
gion. Furthermore, the analysis also demonstrates 
a trend of expanding spatial coverage of LST 
hotspots from 1995 to 2021. In terms of area, the 

Figure 8. LST-NDBI and LST-NDVI correlation
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Figure 9. Mapping vulnerability to drought: hot and cold spots NDVI, LST and VHI

results provide information about the increase in 
LST. Nonetheless, the Mediterranean region is 
considered one of the most vulnerable regions to 
climate change, characterised by a significant rise 
in temperatures in recent decades. This increase 
can be attributed to several factors, including 
changes in urbanisation, variations in elevation, 
slope, temperature fluctuations, and alterations in 

vegetation cover. Furthermore, an investigation 
into the LULC corresponding to LST hotspots 
and cold spots was carried out by overlaying the 
hotspot and cold spot layers with the LULC lay-
ers. Forest areas emerge as significant contribu-
tors to the cold spot regions (Figure 9a) and (Fig-
ure 3) of LULC. The years 2000, 2005, 2010, and 
2015 stand out for the emergence of substantial 
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Figure 9. Cont. Mapping vulnerability to drought: hot and cold spots NDVI, LST and VHI

cold spot areas, especially in forested and culti-
vated zones. Conversely, LST hotspots mainly 
appeared in built-up land areas. In 2000, the 
hotspot was primarily confined to the southern 
part of Macta; in the following years, it gradually 
encompassed almost the entire northern area. It 
is worth noting that small, scattered water bodies 
in the area exhibited cooler temperatures, serv-
ing as localised cool spots. These water bodies 
play a central role in mitigating the urban thermal 
environment by providing a positive impact on 
temperature reduction, but within certain spatial 
limits. The spatial distribution of NDVI hotspots 
is illustrated in (Figure 9b), showing a concerning 
decline. Upstream of the Tafna basin, a dominant 
spatial pattern reveals a hotspot area of NDVI that 
decreases over time. In addition, three persistent 
cold spots are observed in the north-eastern and 
central parts of the Tafna basin, indicating a sta-
tistically significant decrease in vegetation cover. 
In the central Macta region, a band is character-
ised by an absence of noticeable hotspots or cold 
spots, suggesting the absence of explicit spatial 
patterns or trends in vegetation cover throughout 
the two-decade period. In a specific segment of 
the central Macta basin, a limited area exhibits 
oscillating hotspots, indicating declining vegeta-
tion cover from 1995 to 2015, an absence of cover 
in 2021, and a significant downward trend each 

year. Nevertheless, this region also has a histori-
cal record of low vegetation cover. On the other 
hand, an intensifying cold area predominates 
in the southern and north-eastern wings of the 
Macta basin, illustrating consistently low vegeta-
tion cover despite the increasingly cold charac-
teristics of the region. The geographical area is 
located at the interface of Mediterranean and Sa-
haran environmental influences. Mediterranean 
air masses exhibit distinctive characteristics in 
the form of anticyclones that result in dry sum-
mers. Saharan climatic impacts are characterised 
by the prevalence of north and northeast winds, 
which are dominant in both winter and summer. 
The vegetation in the north-western part of Al-
geria is influenced by the interaction between 
Saharan climatic factors and Mediterranean air 
masses. As shown in (Figure 9b), almost the en-
tire study area displays a statistically significant 
downward trend in NDVI values, indicating a 
general reduction in vegetation cover over the 
analysed period, whether in hotspots or cold 
spots. The integration of LST and NDVI alone 
may not be sufficient for a complete drought 
analysis. Therefore, VHI is calculated for accu-
rate drought detection by a combination of VCI 
and TCI. Graphical observation of the VHI maps 
offers nuanced information on drought patterns 
and their spatial variations. This integration of 



55

Ecological Engineering & Environmental Technology 2024, 25(5), 42–60

remote sensing data into climate change studies 
is beneficial for identifying hotspots. Figure 9c
presents the VHI by providing the drought se-
verity statement. A distinctive pattern of drought 
appears, with significant vegetation stress ob-
served in 2000 and 2021, covering 52.26% and 
61.04% of the area respectively. This stress is at-
tributed to widespread vegetation growth under 
climatic anomalies, indicative of severe drought 
during these periods. Conversely, moderate 
drought conditions were identified, representing 
22.33% in 2005 and 17.11% in 2015. In addi-
tion, it is crucial to point out that the VHI shows 
notable decreases in the north-west, potentially 
influenced by the increase in LST in this region 
over recent decades (Figure 9c). This interaction 
of observed indices and models improves the 
understanding of drought dynamics.

LULC and LST projections for 2030 and 2050

Figure 10 illustrates the projected scenarios 
for LULC and LST for the years 2030 and 2050. 
On the basis of the results of the conducted simu-
lation, a notable reduction in the area of agricul-
tural land is observed, with a decrease of 27.55% 
in 2030 and 27.13% in 2050, compared to the 
28.21% reported in 2021 (Figure 4), followed by 
a decrease in bare land of 50.44% in 2030 and 

50.35% in 2050, as well as a substantial increase 
in forested areas of 19.37% and 19.31% in 2030 
and 2050, respectively (Figure 10). Furthermore, 
the LST projections indicate high temperatures in 
the central Macta region and the south and north-
west of Tafna. Uncontrolled urbanisation to the 
north and the increasing LST trends observed in 
the area raise concerns for urban managers and 
planners. The regions where expected LST val-
ues are particularly high (Figure 10), should be 
a priority for implementing measures to mitigate 
the urban heat island (UHI) effect. Potential fac-
tors contributing to temperature increase include 
greenhouse effect variations, climate warming, 
and changes in surface characteristic.

DISCUSSION

The distribution patterns of LST and NDVI 
show spatially opposite characteristics (Figure 
8b). The high NDVI values in the south-western 
parts of TAFNA and in the central MACTA co-
incide with relatively low LST values. This con-
firms the direct impact of vegetation, considered 
as green frame, on temperatures by effectively 
reducing the amount of absorbed radiation, a phe-
nomenon demonstrated by (Zhou et al., 2017), ac-
cording to which vegetation cover generally has a 

Figure 10. Forecasts for 2030 and 2050 regarding LULC and LST
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moderating effect on LST. Conversely, other are-
as display high LST peaks with low NDVI values 
due to reduced shading and evapotranspiration, 
creating water stress and reducing the contribu-
tion of vegetation to the temperature mitigation 
processes. This indicates that vegetation growth 
and productivity can also be influenced by tem-
perature, creating a feedback loop between NDVI 
and LST. The correlation results reveal a nega-
tive relationship between NDVI and LST, with 
statistically significant “R” values ranging from 
-0.52 (high), -0.26 (low), -0.48 (moderate), -0.55 
(high), -0.58 (high), and -0.47 (moderate), re-
spectively, at all-time steps. According to (Zheng 
et al., 2021), these negative correlations can oc-
cur when higher temperatures lead to increased 
soil water evaporation. This increased evapora-
tion decreases soil moisture levels, creating the 
conditions of vegetation water stress, resulting 
in a decrease in NDVI. Guha et al. (2021) also 
found that a negative correlation occurs when wa-
ter availability is a limiting factor for vegetation 
growth. These results are in line with those ob-
tained by (Ferrelli et al., 2018; Li et al., 2021).
Several factors contribute to varying degrees 
to the relationship between NDVI and LST in 
semi-arid regions. According to (Alademomi et 
al., 2022), limited and uneven vegetation cover 
in semi-arid areas contributes to increased LST 
by reducing albedo, limiting evapotranspiration, 
and reducing shading, thus explaining the strong 
correlation observed. The occurrence of climate 
phenomena caused by temperature anomalies 
leading to reduced precipitation in the region can 
also contribute to the increase in LST and the 
reduction of vegetation photosynthetic capacity. 
However, a moderate to low correlation of -0.26 
between NDVI and LST is observed for the year 
2000 in the study region, contradicting the results 
of other years. This discrepancy could be attrib-
uted to soil moisture levels, as wet conditions 
allow the soil to absorb more heat, resulting in 
lower LST values (Hussain et al., 2023). Differ-
ential soil moisture conditions can lead to vari-
able LST estimates, even under uniform NDVI 
conditions (Njoku and Tenenbaum 2022). On the 
other hand, available rainfall data indicate that the 
year 2000 experienced abnormally low rainfall in 
the region, which would have contributed to drier 
soils, in turn increasing surface temperature and 
potentially negatively impacting vegetation, thus 
reducing NDVI. On the other hand, the relation-
ship between LST and NDBI shows a moderate 

to high positive correlation ranging from 0.47 to 
0.67. The development of LST in the region has 
been favoured by rapid urban growth at the ex-
pense of vegetated areas. Indeed, NDBI reflects 
the presence of non-vegetated surfaces, such as 
urban areas, roads, and bare soil, which have a 
warming effect on the land surface. These sur-
faces generally have a higher albedo (i.e., they 
reflect less radiation), leading to increased heat 
absorption and higher LST values (Zhang et al., 
2017). Research on the thermo-physical proper-
ties of materials has revealed how various urban 
elements such as building roofs, road pavements, 
green spaces, and urban forests can influence the 
microclimatic conditions of the urban environ-
ment, especially concerning albedo (Al-Hafiz et 
al., 2017; Yang et al., 2015). This positive rela-
tionship confirms the predominant role in the 
formation of the UHI (Renard et al., 2019; Sub-
hanil and Govil 2021). (Rashid et al., 2021) found 
similar findings in their studies. Changes in cor-
relation coefficients between NDVI and LST, as 
well as between LST and NDBI, are attributed to 
a combination of interannual variations, climatic 
influences, land cover changes, and local factors. 
Moreover, the physical characteristics of semi-ar-
id regions, such as low rainfall, strong winds, and 
limited cloud cover, contribute to the strong rela-
tionship between NDVI, NDBI, and LST. These 
conditions result in a reduction in the amount of 
moisture available to the ecosystem, amplifying 
the effects of water and thermal stress on vegeta-
tion. The impact of land cover changes has been 
studied by examining transitions between land 
cover types. The highest observed transitions were 
for water, built-up areas, and bare land (Figures 3 
and 4).The spatial extent of agricultural land and 
forests has significantly decreased by 17.45% and 
1.36%, respectively, between 1995 and 2021. The 
central and northern regions of Macta, as well as 
the western part of Tafna, have been more heavily 
affected by this regression. Overall, forest degra-
dation is mainly related to a combination of natural 
and anthropogenic factors. Among these factors is 
climate change, such as the increasing frequency 
and severity of droughts in the region, forest fires, 
soil degradation, and the expansion of urban areas 
(Bentchakal et al., 2021). In addition, human ac-
tivities, such as vegetation restoration and land use 
modifications, play a significant role in vegetation 
growth, resulting in various land-use characteris-
tics (Jiang et al., 2021; Li et al., 2021). The effects 
of these land cover changes have repercussions on 
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the environmental dynamics of the region. Differ-
ent land cover types exhibit varying responses to 
LST, NDVI, and NDBI, underscoring the impor-
tance of considering land cover in environmental 
assessments. Water bodies and vegetation have 
cooling effects on LST, while urban areas and bare 
soils contribute to the UHI effect, increasing diur-
nal LST (Alademomi et al., 2022). 

Getis-Ord G* statistical results are used for 
drought monitoring. The analysis reveals an in-
creasing trend in the spatial extent of LST hot-
spots from 1995 to 2021. This expansion is close-
ly related to changes in LULC, characterised by 
unplanned urban sprawl and a reduction in cul-
tivated lands. Uncontrolled urban expansion has 
adverse consequences for the environment, poten-
tially leading to the long-term deterioration of the 
region (Yin et al., 2022). According to (Mosam-
mam et al., 2017), unplanned urban sprawl 
could significantly harm the environment, while 
planned urban sprawl mitigates these adversities 
to a greater extent. Studies have shown that the 
most critical factor in urban sprawl is the presence 
of roads providing access to major development 
hotspots and other facilities (Hasan et al., 2022). 
The expansion of the UHI phenomenon becomes 
evident when evaluating changes over a 26-year 
period. Conversely, the cold spots in water bodies 
emphasise their vital role in mitigating extreme 
temperatures. These cooling effects on water bod-
ies highlight their ecological importance and the 
need to preserve them against urbanisation pres-
sures. On the other hand, hot and cold drought 
spots based on NDVI are detected upstream of the 
Tafna basin and in parts of Macta, indicating a 
decrease in vegetation cover clustering intensity. 
Declining hot spot proportions are increasingly 
observed in both basins. These results are con-
sistent with long-term changes in LST and LULC 
models induced by climate change. These results 
highlight the importance of land conservation 
measures and development planning to preserve 
natural ecosystems and promote sustainable use 
of land resources. Overall, the analysis highlights 
the strong association between LST, NDVI and 
NDBI, underlying land use, and land cover con-
ditions significantly influencing their distribution 
and intensity. It marks the end of a sectoral man-
agement process that allows for divergent actions 
and considers very little living space. The adop-
tion of integrated, sustainable management is the 
best defence against the undeniable effects of cli-
mate warming that threatens citizens.

CONCLUSIONS

This study analysed the complex dynamics and 
interrelationships between the environmental vari-
ables NDVI, NDBI and LST in relation with land 
cover change and the effects of climate change at 
the local scale. The conducted observations have 
allowed assessing the magnitude as well as scope of 
the threats and challenges that are emerging in rela-
tion to the identified trends, taking into account cli-
mate change projections specific to the study area. 
The configuration and values of these three param-
eters vary accordingly with changes in land cover. 
The results demonstrate that lower NDVI values 
were found in the areas where LST and NDBI are 
higher. Furthermore, the interaction between LST 
and NDBI depended on specific types of LULC. 
The negative correlation between NDVI and LST 
revealed that interannual fluctuations have a signifi-
cant impact on vegetation growth, with a declining 
trend in NDVI. On this basis, it can be concluded 
that there is a strong and significant interaction be-
tween these environmental variables outside pe-
riods of water stress and with a comfortable soil 
water reserve. The substantial transformations in 
LULC highlight the constant dynamic nature of 
changes and the impact of human activities on the 
landscape. The observed spatial patterns reflect the 
extensive conversion of previously vegetated and 
arid lands into urbanised or built-up areas. This ex-
pansion is attributed to various factors, including 
population growth, urbanisation, land development 
activities, and the mass exodus of people from the 
south forced by the continuing high temperatures 
that are the very expression of climate change. To 
better understand the spatio-temporal dynamics 
of LST and NDVI, the Getis-Ord-Gi* statistical 
analysis was employed. The results of this analy-
sis indicate that the region has experienced simul-
taneous increases in LST, rapid urbanisation, and 
significant vegetation loss, clearly illustrating the 
expansion of heat islands, especially in the north 
and northeast of the area. The implications of this 
study are considerable. They underscore the crucial 
need for sustainable land resource management and 
development planning in the region. To mitigate 
the UHI effect and preserve natural ecosystems, 
policymakers and urban planners must prioritise 
measures such as reforestation, controlled urban 
growth, and water resource management. These 
actions cannot be undertaken in a piecemeal and 
sectoral manner but should be part of a sustainable 
and integrated approach, especially with a focus on 
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raising awareness. However, shortcomings have 
been identified, such as the lack of in-depth analy-
sis of the impact of climate change. Future research 
should consider more impact factors, such as wa-
ter retention capacity, groundwater variations, and 
soil properties, which have a significant influence 
on watershed development. These high-contribut-
ing factors could also be examined for predicting 
vegetation and LST change trends, which are es-
sential for ecosystem development. The extraction 
of three factors from a significantly more extensive 
and complex set reveals the direct effects of climate 
change on populations in the southern regions, 
compelled to mobility and in search of the areas 
with a milder climate, close to the sea. However, 
this situation is expected to intensify and reach 
physical horizons previously untouched, such as 
groundwater, the primary water resource, which is 
heavily exploited for domestic needs without co-
herent and sustainable management.
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