PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Powiadomienia systemowe
  • Sesja wygasła!
  • Sesja wygasła!
Tytuł artykułu

Simulation research of bionic image intensifier based on the retina structure of elephant-nose fish

Treść / Zawartość
Identyfikatory
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
Enhancing image brightness under low light conditions is crucial. The traditional night vision technology depends on the development of photoelectric materials and accurate image processing algorithms. Inspired by the structure of elephant-nose fish, we construct a bionic image intensifier (BII) model. The BII is a planar array based on the concentrating principle of the compound parabolic concentrator (CPC). This solution is based on pure optical design and independent. Through light tracing, the simulation results show that the brightness of the image is improved and good image uniformity is obtained. Quantitative analysis of the geometric concentration ratio (GCR) and the image uniformity is used to optimize CPC structure parameters. At the same time, we also discuss the influence of CPC structural parameters on image continuity, uniformity and geometric concentration ratio. The optimization results are as follows: the input port diameter is 50 μm, the output port diameter is 10 μm, the height is 90 μm, the GCR is 5.61, and the image uniformity is 95.30%. The comprehensive performance of the BII achieves the best.
Czasopismo
Rocznik
Strony
551--566
Opis fizyczny
Bibliogr. 19 poz., rys.
Twórcy
  • College of Precision Instrument and Opto-Electronics Engineering, Tianjin University, Tianjin 300072, China
  • Key Laboratory of Optoelectronics Information Technical Science, EMC, Tianjin 300072, China
autor
  • College of Precision Instrument and Opto-Electronics Engineering, Tianjin University, Tianjin 300072, China
  • Key Laboratory of Optoelectronics Information Technical Science, EMC, Tianjin 300072, China
autor
  • College of Precision Instrument and Opto-Electronics Engineering, Tianjin University, Tianjin 300072, China
  • Key Laboratory of Optoelectronics Information Technical Science, EMC, Tianjin 300072, China
autor
  • College of Precision Instrument and Opto-Electronics Engineering, Tianjin University, Tianjin 300072, China
  • Key Laboratory of Optoelectronics Information Technical Science, EMC, Tianjin 300072, China
autor
  • College of Precision Instrument and Opto-Electronics Engineering, Tianjin University, Tianjin 300072, China
  • Key Laboratory of Optoelectronics Information Technical Science, EMC, Tianjin 300072, China
Bibliografia
  • [1] KOLB H., How the retina works: much of the construction of an image takes place in the retina itself through the use of specialized neural circuits, American Scientist 91(1), 2003, pp. 28–35.
  • [2] MORRIS N.J., Night walking: darkness and sensory perception in a night-time landscape installation, Cultural Geographies 18(3), 2011, pp. 315–342, DOI:10.1177/1474474011410277.
  • [3] TAO Y., JIN W.-Q., WANG Y., SHI F., GUO H., The MTF analysis of high performance proximity image intensifier, Guangzi Xuebao/Acta Photonica Sinica 45(6), 2016, article 0604003, DOI:10.3788/gzxb20164506.0604003.
  • [4] LI J.P., ZHANG Y., WANG Y., The current situation and development of low-light-level image intensifier and its core materials, Guangxue Jishu/Optical Technique 43(3), 2017, pp. 284–288.
  • [5] BAI X.F., YANG S.N., HOU Z.P., NVIS compatible characteristic of low light level image intensifier assembly, Infrared and Laser Engineering 45(S2), 2016, pp. 101–105.
  • [6] NI Y.R., LU C.H., MENG X.F., XU Z.Z., ZHANG Q.T., Novel filter materials for glimmer detector, Journal of Nanjing University 25(4), 2003, pp. 69–72.
  • [7] NI Y.R., LU C.H., MENG X.F., XU Z.Z., A study of a new type of light absorbable glimmer detector, Materials Review 17(7), 2003, pp. 73–75.
  • [8] LIU H., HUANG Y., JIANG H., Artificial eye for scotopic vision with bioinspired all-optical photosensitivity enhancer, Proceedings of the National Academy of Sciences of the United States of America, PNAS 113(15), 2016, pp. 3982–3985, DOI:10.1073/pnas.1517953113.
  • [9] LOPEZ-SANCHEZ O., LEMBKE D., KAYCI M., RADENOVIC A., KIS A., Ultrasensitive photodetectors based on monolayer MoS2, Nature Nanotechnology 8(7), 2013, pp. 497–501, DOI:10.1038/nnano.2013.100.
  • [10] LIU C.H., CHANG Y.C., NORRIS T.B., ZHONG Z., Graphene photodetectors with ultra-broadband and high responsivity at room temperature, Nature Nanotechnology 9(4), 2014, pp. 273–278, DOI:10.1038/nnano.2014.31.
  • [11] VASHCHENKO V.A., SINKEVITCH V.F., Physical Limitations of Semiconductor Devices, Springer US, 2008, DOI:10.1007/978-0-387-74514-5.
  • [12] SORENSEN R., We see in the dark, Noûs 38(3), 2004, pp. 456–480, DOI:10.1111/j.0029-4624.2004.00478.x.
  • [13] WARRANT E.J., JOHNSEN S., Vision and the light environment, Current Biology 23(22), 2013, pp. R990–R994, DOI:10.1016/j.cub.2013.10.019.
  • [14] FRANCKE M., KREYSING M., MACK A., ENGELMANN J., KARL A., MAKAROV F., GUCK J., KOLLE M., WOLBURG H., PUSCH R., DER EMDE G., SCHUSTER S., WAGNER H.-J., REICHENBACH A., Grouped retinae and tapetal cups in some Teleostian fish: occurrence, structure, and function, Progress in Retinaland Eye Research 38, 2014, pp. 43–69, DOI:10.1016/j.preteyeres.2013.10.001.
  • [15] KREYSING M., PUSCH R., HAVERKATE D., LANDSBERGER M., ENGELMANN J., RUITER J., MORA-FERRER C., ULBRICHT E., GROSCHE J., FRANZE K., STREIF S., SCHUMACHER S., MAKAROV F., KACZA J., GUCK J., WOLBURG H., BOWMAKER J.K., VONDER EMDE G., SCHUSTER S., WAGNER H.-J., REICHENBACH A., FRANCKE M., Photonic crystal light collectors in fish retina improve vision in turbid water, Science 336(6089), 2012, pp. 1700–1703, DOI:10.1126/science.1218072.
  • [16] LANDSBERGER M., VON DER EMDE G., HAVERKATE D., SCHUSTER S., GENTSCH J., ULBRICHT E., REICHENBACH A., MAKAROV F., WAGNER H.-J., Dim light vision – morphological and functional adaptations of the eye of the mormyrid fish, Gnathonemus petersii, Journal of Physiology-Paris 102(4–6), 2008, pp. 291–303, DOI:10.1016/j.jphysparis.2008.10.015.
  • [17] ZHANG H., CHEN H., HAN Y., LIU H., LI M., Experimental and simulation studies on a novel compound parabolic concentrator, Renewable Energy 113, 2017, pp. 784–794, DOI:10.1016/j.renene.2017.06.044.
  • [18] SU Z., GU S., VAFAI K., Modeling and simulation of ray tracing for compound parabolic thermal solar collector, International Communications in Heat and Mass Transfer 87, 2017, pp. 169–174, DOI:10.1016/j.icheatmasstransfer.2017.06.021.
  • [19] JAAZ A.H., HASAN H.A., SOPIAN K., MOHD HAFIDZ BIN HAJI RUSLAN, SALEEM HUSSAIN ZAIDI, Design and development of compound parabolic concentrating for photovoltaic solar collector: review, Renewable and Sustainable Energy Reviews 76, 2017, pp. 1108–1121, DOI:10.1016/j.rser.2017.03.127.
Uwagi
Opracowanie rekordu ze środków MNiSW, umowa Nr 461252 w ramach programu "Społeczna odpowiedzialność nauki" - moduł: Popularyzacja nauki i promocja sportu (2021).
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-4996ddf0-62dd-47f1-8208-7db206e85744
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.