PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

Commonly used metallic biomaterials may be involved in cancer processes – in vitro studies

Treść / Zawartość
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
There are reports available in the literature describing neoplastic changes around implants or at distant sites that temporally correlate with implantation, although they are not supported by sufficient clinical evidence. Such reports mainly concern the implantation of dental implants, which are performed in the largest number, and squamous cell carcinoma is one of the main types of cancer located in the vicinity of such implants. The occurrence of malignancies after hip arthroplasty has also been described in the vicinity of endoprostheses. At present, there are no indisputable data on the promotion of carcinogenesis by the implants used, and the problem of accelerated tumour induction in the area of implantation is still poorly understood and unclear. The aim of the study was a preliminary assessment of changes in the physiological processes of cells induced by metallic biomaterials intended for orthopaedic implants. A preliminary assessment of changes in the expression of cancer-promoting genes in chondrocytes exposed to metallic biomaterials was recently published. The current report is an analytical summary of changes in proliferation potential, DNA damage repair activity, and apoptosis level of primary and neoplastic cells (chondrocytes and osteoblasts) exposed to commonly used metallic biomaterials (AISI 316L, Ti6Al4V, Ti6Al7Nb, and CoCrMo). Immunofluorescence labelling techniques in flow cytometry were used for the study. The results obtained allow us to state that short-term (48 h) direct exposure to metallic biomaterials of osteoblasts and chondrocytes, both primary and cancerous, can cause significant changes in cell physiology, which may result in promoting the cancer process.
Rocznik
Strony
16--23
Opis fizyczny
Bibliogr. 46 poz., tab.
Twórcy
  • Department of Biophysics, Institute of Materials Science and Engineering, Lodz University of Technology, Stefanowskiego 1/15, 90-537 Lodz, Poland
  • Department of Medical Imaging Techniques, Medical University of Lodz, Lindleya 6, 90-131 Lodz, Poland
  • Department of Biophysics, Institute of Materials Science and Engineering, Lodz University of Technology, Stefanowskiego 1/15, 90-537 Lodz, Poland
  • Department of Biophysics, Institute of Materials Science and Engineering, Lodz University of Technology, Stefanowskiego 1/15, 90-537 Lodz, Poland
  • Aflofarm Farmacja Polska Sp. z o.o., Partyzancka 133/151, 95-200 Pabianice, Poland
  • Department of Biophysics, Institute of Materials Science and Engineering, Lodz University of Technology, Stefanowskiego 1/15, 90-537 Lodz, Poland
  • Laboratories of Bionanopark, Bionanopark Sp. z o.o., Dubois 114/116, 93-465 Lodz, Poland
  • Department of Biophysics, Institute of Materials Science and Engineering, Lodz University of Technology, Stefanowskiego 1/15, 90-537 Lodz, Poland
  • Laboratories of Bionanopark, Bionanopark Sp. z o.o., Dubois 114/116, 93-465 Lodz, Poland
  • Department of Biophysics, Institute of Materials Science and Engineering, Lodz University of Technology, Stefanowskiego 1/15, 90-537 Lodz, Poland
  • Laboratories of Bionanopark, Bionanopark Sp. z o.o., Dubois 114/116, 93-465 Lodz, Poland
Bibliografia
  • [1] Raval N., Kalyane D., Maheshwari R., Tekade R.K.: Chapter 17 - Surface Modifications of Biomaterials and Their Implication on Biocompatibility, In Biomaterials and Bionanotechnology; Tekade R.K., Ed., Academic Press: London, UK (2019) 639-674.
  • [2] Hu X., Wang T., Li F., Mao X.: Surface modications of biomaterials in dierent applied elds. RSC Adv. 13 (2023) 20495.
  • [3] Aguado B.A., Grim J.C., Rosales A.M., Watson-Capps J.J., Anseth K.S.: Engineering precision biomaterials for personalized medicine. Sci Transl Med. 10 (2018) 424.
  • [4] Kimber Ian., Basketter D.A.: Allergic Sensitization to Nickel and Implanted Metal Devices: A Perspective. Dermatitis 33(6) (2021) 396-404.
  • [5] Duarte I., Mendonça R.F., Korkes K.L., Lazzarini R., de Figueiredo Silva Hafner M.: Nickel, chromium and cobalt: the relevant allergens in allergic contact dermatitis. Comparative study between two periods: 1995-2002 and 2003-2015. An Bras Dermatol. 93(1) (2018) 59-62.
  • [6] Bhatavadekar N.B.: Squamous Cell Carcinoma in Association With Dental Implants: An Assessment of Previously Hypothesized Carcinogenic Mechanisms and a Case Report. Journal of Oral Implantology 28(6) (2012) 792-798.
  • [7] Holy C.E., Zhang S., Perkins L.E., Hasgall P., et al.: Site-specific cancer risk following cobalt exposure via orthopedic implants or in occupational settings: A systematic review and meta-analysis. Regulatory Toxicology and Pharmacology 129 (2022) 105096.
  • [8] Go J-H.: Metallic implant-associated lymphoma: ALK-negative anaplastic large cell lymphoma associated with total knee replacement arthroplasty. J Pathol Transl Med 57 (2023) 75-78.
  • [9] Rubio-Saez I., Merino-Rueda L.R., Alonso-Sanz J., Iglesias-Urraca C., Peleteiro-Pensado M., et al: Sarcomas Associated with Metal Implants in Orthopedic Surgery and Traumatology. A Report of 3 Cases in 2 Patients. J Orthop Surg Tech. 3(2) (2020) 194-198.
  • [10] Keel S.B., Jaffe K.A., Nielsen G.P., Rosenberg A.E.: Orthopaedic Implant-Related Sarcoma: A Study of Twelve Cases. Mod Pathol. 14(10) (2001) 969-977.
  • [11] Hess S.R., Rudloff N.A.: Incisional squamous cell carcinoma after total knee arthroplasty. Arthroplast Today. 8(5) (2019) 292-295.
  • [12] Glaß H., Jonitz-Heincke A., Petters J., Lukas J., et al.: Corrosion Products from Metallic Implants Induce ROS and Cell Death in Human Motoneurons In Vitro. J. Funct. Biomater. 14 (2023) 392.
  • [13] Walkowiak-Przybyło M.: May metallic biomaterials used for orthopaedic implants promote carcinogenesis? Preliminary transcriptomic research on human chondrocytes. Engineering of Biomaterials 157 (2020) 15-19.
  • [14] Mattern J., Volm M.: Imbalance of Cell Proliferation and Apoptosis During Progression of Lung Carcinomas. Anticancer Research 24 (2004) 4243-4246.
  • [15] Feitelsona M.A., Arzumanyana A., Kulathinala R.J., et al.: Sustained proliferation in cancer: Mechanisms and novel therapeutic targets. Seminars in Cancer Biology 35 (2015) S25–S54.
  • [16] Wong R.S.Y.: Apoptosis in cancer: from pathogenesis to treatment. Journal of Experimental & Clinical Cancer Research 30 (2011) 87.
  • [17] Chaudhry G-e-S., Md Akim A., Sung Y.Y., Sifzizul T.M.T.: Cancer and apoptosis: The apoptotic activity of plant and marine natural products and their potential as targeted cancer therapeutics. Front. Pharmacol. 13 (2022) 842376.
  • [18] Berwick M., Vineis P.: Markers of DNA Repair and Susceptibility to Cancer in Humans: an Epidemiologic Review. Journal of the National Cancer Institute 92 (2000) 11.
  • [19] Torgovnick A., Schumacher B.: DNA repair mechanisms in cancer development and therapy. Front. Genet. 6 (2015) 157.
  • [20] Mustaki L., Goetti P., Gallusser N., Morattel B., Rüdiger H.A., Cherix S.: Unrecognized Chondrosarcoma as a Cause of Total Hip Arthroplasty Failure. Arthroplasty Today 7 (2021) 84-90.
  • [21] Herget G.W., Strohm P., Rottenburger C., Kontny U., et al.: Insights into Enchondroma, Enchondromatosis and the risk of secondary Chondrosarcoma. Review of the literature with an emphasis on the clinical behaviour, radiology, malignant transformation and the follow up. Neoplasma 61(4) (2014) 365-378.
  • [22] Apoptosis, DNA Damage and Cell Proliferation Kit. Technical Data Sheet No. 562253, BD Pharmingen™, Beckton Dickinson Biosciences.
  • [23] Bhatavadekar N.B.: Squamous Cell Carcinoma in Association with Dental Implants: An Assessment of Previously Hypothesized Carcinogenic Mechanisms and a Case Report. Journal of Oral Implantology 2012 38 6 792-798.
  • [24] Salgado-Peralvo A.O., Arriba-Fuente L., Mateos-Moreno M.V., Salgado-García A.: Is there an association between dental implants and squamous cell carcinoma? Br Dent J. 221(10) (2016) 645-649.
  • [25] De Ceulaer J., Magremanne M., van Veen A., Scheerlinck J.: Squamous Cell Carcinoma Recurrence Around Dental Implants. Oral and Maxillofacial Surgery 68(10) (2010) 2507-2512.
  • [26] Gillespie W.J., Frampton C.M., Henderson R.J., Ryan P.M.: The incidence of cancer following total hip replacement. The Journal of Bone & Joint Surgery British 70(4) (1988) 539-542.
  • [27] Visuri T., Pulkkinen P., Paavolainen P.: Malignant Tumors at the Site of Total Hip Prosthesis. Analytic Review of 46 Cases. The Journal of Arthroplasty 21(3) (2006) 311-323.
  • [28] Jané-Salas E., López-López J., Roselló-Llabrés X., et al.: Relationship between oral cancer and implants: clinical cases and systematic literature review. Med Oral Patol Oral Cir Bucal. 17(1) (2012) e23–e28.
  • [29] Niraula S., Katel A., Barua A., Weiss A., Strawderman M.S., Zhang H., et al.: A Systematic Review of Breast Implant-Associated Squamous Cell Carcinoma. Cancers 15(18) (2023) 4516.
  • [30] Marra A., Viale G., Pileri S.A., Pravettoni G., Viale G., De Lorenzi F., et al.: Breast implant-associated anaplastic large cell lymphoma: A comprehensive review. Cancer Treat Rev. 84 (2020) 101963.
  • [31] von Fritschen U., Kremer T., Prantl L., Fricke A.: Breast Implant-Associated Tumors. Geburtshilfe Frauenheilkd 2023, 83(6) 686-693.
  • [32] Hunt L.P., Blom A.W., Matharu G.S., Porter M.L., Whitehouse M.R.: The risk of developing cancer following metal-on-metal hip replacement compared with non metal-on-metal hip bearings: Findings from a prospective national registry “The National Joint Registry of England, Wales, Northern Ireland and the Isle of Man”. PLOS ONE 13,9 (2018) e0204356.
  • [33] Dybvik E., Furnes O., Havelin L.I., et al.: A prospective study on cancer risk after total hip replacements for 41,402 patients linked to the Cancer registry of Norway. BMC Musculoskelet Disord. 21 (2020) 599.
  • [34] Tumour site concordance and mechanisms of carcinogenesis. Edited by Baan, R.A., Stewart, B.W., Straif, K. Eds., International Agency for Research on Cancer (2019) 69372 Lyon Cedex 08, France, ISBN 978-92-832-2215-6, http://publications.iarc.fr
  • [35] Wijewardhane N., Dressler L., Ciccarelli F.D.: Normal Somatic Mutations in Cancer Transformation. Cancer Cell 39 (2021) 125-129.
  • [36] Zhao H., Wu L., Yan G., Chen Y., Zhou M., Wu Y., Li Y.: Inflammation and tumor progression: signaling pathways and targeted intervention. Signal Transduction and Targeted Therapy 6 (2021) 263.
  • [37] Keibler M.A., Wasylenko T.M., Kelleher J.K., et al.: Metabolic requirements for cancer cell proliferation. Cancer & Metabolism 4 (2016) 16.
  • [38] Torgovnick A., Schumacher B.: DNA repair mechanisms in cancer development and therapy. Front. Genet. 6 (2015) 157.
  • [39] Li L., Pan S., Zhou X., Meng X., Han X., Ren Y., Yang K., Guanet Y.: Reduction of In-Stent Restenosis Risk on Nickel-Free Stainless Steel by Regulating Cell Apoptosis and Cell Cycle. PLoS ONE 2013, 8(4): e62193.
  • [40] Wang M.L., Tuli R., Manner P.A., Sharkey P.F., Hall D.J., Tuan R.S.: Direct and indirect induction of apoptosis in human mesenchymal stem cells in response to titanium particles. Journal of Orthopaedic Research 21(4) (2003) 697-707.
  • [41] Landgraeber S., Jäger M., Jacobs J.J., Hallab N.J.: The pathology of orthopedic implant failure is mediated by innate immune system cytokines. Mediators Inflamm. (2014) 185150.
  • [42] Hwang H.S., Kim H.A.: Chondrocyte Apoptosis in the Pathogenesis of Osteoarthritis, Int. J. Mol. Sci. 16 (2015) 26035–26054.
  • [43] Tuleta I., Bauriedel G., Steinmetz M., Pabst S., Peuster M., Welsch U., Nickenig G., Skowaschet D.: Apoptosis regulated survival of primarily extravascular cells in proliferative active poststent neointima. Cardiovascular Pathology 19 (2010) 353–360.
  • [44] Zhang W., Gou P., Dupret J-M., Chomienne C., Rodrigues-Lima F.: Etoposide, an anticancer drug involved in therapy-related secondary leukemia: Enzymes at play. Translational Oncology 14 (2021) 101169.
  • [45] Keane Tahmaseb G.C., Keane A.M., Foppiani J.A., Myckatyn T.M.: An Update on Implant-Associated Malignancies and Their Biocompatibility. Int J Mol Sci. 25(9) (2024) 4653. doi: 10.3390/ijms25094653
  • [46] Kang Z., Wu B., Zhang L., Liang X., Guo D., Yuan S., Xie D.: Metabolic regulation by biomaterials in osteoblast. Front. Bioeng. Biotechnol. 11 (2023) 1184463.
Uwagi
Opracowanie rekordu ze środków MNiSW, umowa nr SONP/SP/546092/2022 w ramach programu "Społeczna odpowiedzialność nauki" - moduł: Popularyzacja nauki i promocja sportu (2024).
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-4984adcc-f6da-4ee4-a51e-1ac764e6e482
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.