PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

Option pricing formulas under a change of numeraire

Treść / Zawartość
Identyfikatory
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
We present some formulations of the Cox-Ross-Rubinstein and Black-Scholes formulas for European options obtained through a suitable change of measure, which corresponds to a change of numeraire for the underlying price process. Among other consequences, a closed formula for the price of an European call option at each node of the multi-period binomial tree is achieved, too. Some of the results contained herein, though comparable with analogous ones appearing elsewhere in the financial literature, provide however a supplementary widening and deepening in view of useful applications in the more challenging framework of incomplete markets. This last issue, having the present paper as a preparatory material, will be treated extensively in a forthcoming paper.
Rocznik
Strony
451--473
Opis fizyczny
Bibliogr. 12 poz.
Twórcy
  • Universita degli Studi di Bari Aldo Moro Department of Business and Law Studies Bari, 1-70124 Italy
  • Universita degli Studi di Roma "La Sapienza" Department of Economics and Finance Roma, 1-00185 Italy
Bibliografia
  • [1] BIS, Is the unthinkable becoming routine?, Technical Report, Bank for International Settlements (2015).
  • [2] F. Black, M. Scholes, The pricing of options and corporate liabilities, Journal of Political Economy 81 (1973), 637-654.
  • [3] J.C. Cox, S.A. Ross, M. Rubinstein, Option pricing: A simplified approach, Journal of Financial Economics 7 (1979), 229-263.
  • [4] K.C. Engelen, The unthinkable as the new normal, The International Economy 29 (2015) 3.
  • [5] H. Geman, N. El Karoui, J.C. Rochet, Changes of numeraire, change of probability measure and option pricing, Journal of Applied Probability 32 (1995), 443-458.
  • [6] R.C. Merton, Theory of rational option pricing, Journal of Economy and Management Sciences 4 (1973), 141-183.
  • [7] M. Musiela, M. Rutkowski, Martingale Methods in Financial Modelling, Springer-Verlag Berlin Heidelberg, 2005.
  • [8] L.T. Nielsen, Understanding N(di) and N(d,2): Risk-adjusted probabilities in the Black-Scholes model, Revue Finance 14 (1993), 95-106.
  • [9] L.T. Nielsen, Pricing and Hedging of Derivative Securities, Oxford University Press, 1999.
  • [10] S. Shreve, Stochastic Calculus for Finance I: the Binomial Asset Pricing Model, Springer-Verlag New York, 2004.
  • [11] S. Shreve, Stochastic Calculus for Finance II: Continuous-Time Models, Springer-Verlag New York, 2004.
  • [12] D. Williams, Probability with Martingales, Cambridge University Press, Cambridge UK, 1991.
Uwagi
PL
Opracowanie rekordu ze środków MNiSW, umowa Nr 461252 w ramach programu "Społeczna odpowiedzialność nauki" - moduł: Popularyzacja nauki i promocja sportu (2020).
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-4983b148-39a0-4727-84ae-08e707d7e8b8
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.