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OPTION PRICING FORMULAS
UNDER A CHANGE OF NUMÈRAIRE
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Abstract. We present some formulations of the Cox–Ross–Rubinstein and Black–Scholes for-
mulas for European options obtained through a suitable change of measure, which corresponds
to a change of numèraire for the underlying price process. Among other consequences, a closed
formula for the price of an European call option at each node of the multi-period binomial tree
is achieved, too. Some of the results contained herein, though comparable with analogous ones
appearing elsewhere in the financial literature, provide however a supplementary widening
and deepening in view of useful applications in the more challenging framework of incomplete
markets. This last issue, having the present paper as a preparatory material, will be treated
extensively in a forthcoming paper.
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1. INTRODUCTION

The present paper deals with the possibility of expressing well-known formulas in the
theory of option pricing by using probability measures different from the risk-adjusted
measure Q, but strongly connected to Q through suitable Radon–Nikodym derivatives.

The procedure, which is basically based upon assuming the stock price itself as
a numèraire for the underlying price process, far from being an artificial and fictitious
mathematical issue, presents some advantages, turning out to be helpful to get a deep
insight in the terms appearing in classical option pricing formulas as in Black–Scholes
and Cox–Ross–Rubinstein’s (see [2, 6] and [3]). On the other hand, in the case of
the multi-period binomial model, it allows to write down, with some efforts, a closed
formula (and, therefore, a computational algorithm) for the price of an European
call option at each node of the binomial tree, not yet considered elsewhere as far as
we know. Under the newly defined measures the (discounted) stock price becomes
a submartingale: thus, with a change of measure, we mimic a world which lies between
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the P-real world and the Q-risk neutral world and which, however, resembles more the
former than the latter.

At a first glance, the subject of the paper might seem too theoretical with no
predictable concrete applications thereof. As a matter of fact, the new measures defined
herein may be applied successfully in the framework of incomplete markets, providing
contributions of some interest to the corresponding option pricing issue.

The above aspect, however, which has the submartingale property of the dis-
counted stock price process as a key tool, leading further afield, will be addressed in
a forthcoming paper.

We end this introduction with two notes: firstly, while proceeding in preparing the
manuscript and checking carefully some references which should be consistent with
our investigations, we casually came across the paper [8] by Lars Tyge Nielsen, which,
as the reader may realize, carries out an analysis similar, in some way, to ours, but
developed through different techniques. The paper is original and skillfully draws the
reader’s attention towards the deep meaning of option pricing formulas in the discrete
and continuous case, preferring sometimes a more intuitive rather than a formally
rigorous approach. We hope that the present work may contribute to awaken the fair
interest toward the above cited paper, little-known, in our opinion, in the current
literature.

Secondly, we point out that some results similar to ours may be found in [7];
however, in this regard, some important differences deserve to be remarked. Above all,
our approach carries out a deeper theoretical study of the new measures and of the
corresponding connections with the risk neutral measure Q, both in the discrete and
the continuous case: see, for instance, Propositions 2.1, 3.2, 3.4 and 3.5.

More than that, as far as the discrete case is concerned, we introduce the multi-step
measure Q̂ (see (3.22)) (which does not appear in [7]) and prove a detailed explicit
formula pricing a derivative at each node of the binomial tree, and not solely at
each time step of the tree, as performed in [7]. In other words, our analysis, though
running in the wake of [7], as opposed to it, turns out to be somehow finer, fitting
more accurately with the concrete applications following ahead.

The notation used through the paper is quite standard and do not need particular
comments: following [10], while dealing with the multi-period binomial model with N
steps, we denote by Ek[X] (k ≤ N , X random variable) the conditional expectation
of X based upon the information available at time k (and that we do not know
before k). Such information are contained in the filtration Fk. If Y is another random
variable, Vark(X), covk(X,Y ) and the conditional correlation coefficient ρk(X,Y ) are
defined accordingly. Traditionally, if we are working under a probability measure Q,
the superscript “Q” appears in all the values above and so we shall write EQ

k [X],
VarQk (X) and so on. Each other notation not encompassed here will be specified at
any occurrence.

Finally, let us recall the Black–Scholes formula for an European call option (see,
e.g., [2, 7, 9] and [11]), given by

c(t, St) = StN(d1(τ, St))− e−rτXN(d2(τ, St)), (1.1)
for any t ∈ [0, T ], where
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— St is the current stock price,
— X is the strike price,
— T is the maturity and τ = T − t is the remaining expiration time,
— r is the risk-free interest rate,
— N(·) denotes the cumulative distribution function of a standard normal,
— d1(τ, St) = 1

σ
√
τ

(
ln St

X +
(
r + σ2

2
)
τ
)
and d2(τ, St) = d1(τ, St) − σ

√
τ . In order

to simplify the notation, we will shorten d1(τ, St) and d2(τ, St) by d1 and d2,
respectively.

2. THE CONTINUOUS CASE

Let (Ω,F ,Ft,P) be a filtered probability space and consider a dynamic market envi-
ronment with a riskeless bond Bt with maturity T satisfying

dBt = rBtdt, B0 = 1,

and a risky asset whose price process (St)0≤t≤T follows a geometric Brownian motion,
i.e., it is driven by the following SDE

dSt = µStdt+ σStdWt, S0 > 0; (2.1)

here µ ≥ 0 and σ > 0 are respectively the drift and the volatility of the process and
(Wt)0≤t≤T is a standard Brownian motion.

Assume that, at each time t ∈ [0, T ], we buy ∆t shares of stock and invest the
remaining part in the money market account at risk-free rate r. The evolution of this
portfolio is described by the dynamics

dXt = rXtdt+ ∆t(µ− r)Stdt+ ∆tσStdWt.

We can replicate our portfolio by a short position in a derivative security, e.g., in a call
option with strike X; the call pays (ST −X)+ = max(ST −X, 0) at maturity T and
its price ct depends on t and St. The replication (hedging) happens if and only if

Xt = ct, (2.2)

for any t.
Now, after considering the discount factor Dt = e−rt, from the Ito–Doeblin formula

it follows that the discounted stock price satisfies

d(e−rtSt) = σDtSt(θdt+ dWt),

where θ = µ−r
σ is the market price of risk. Hence we can write

d(e−rtSt) = σDtStdW
Q
t , (2.3)

where
dQ
dP

= exp
(
−

T∫

0

θ dWu −
1
2

T∫

0

θ2 du

)
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is the Radon–Nikodym derivative and, by virtue of Girsanov’s Theorem (see, e.g.,
[11, Chapter V]), the processWQ

t := Wt+
∫ t

0 θ du (0 ≤ t ≤ T ) is a Q-Brownian motion.
The measure Q is said to be risk-neutral because it is equivalent to P and, in addition,
turns the discounted price e−rtSt into a martingale; indeed, according to (2.3), we have

e−rtSt = S0 +
t∫

0

σe−ruSudW
Q
u ,

and the process
(∫ t

0 σe
−ruSudWQ

u

)
0≤t≤T is an Ito integral and therefore aQ-martingale

(for more details see, e.g., [11, Chapter IV]). In particular the stock price process
(St)0≤t≤T is described by the Q-dynamics

dSt = rStdt+ σStdW
Q
t

and henceforth it will be supposed adapted to the filtration (Ft)0≤t≤T . Moreover, from
the replication condition (2.2), we get e−rtXt = e−rtct, where e−rtct = e−rTEQ[cT |Ft]
due to the martingale property under Q. Summing up, for any t ∈ [0, T ], the call price
is given by

ct = e−rτEQ[(ST −X)+|Ft], (2.4)
or, equivalently, by

ct = e−rτEQ[(ST −X) · 1{ST>X}|Ft]
= e−rτEQ[ST · 1{ST>X}|Ft]− e−rτEQ[X · 1{ST>X}|Ft]
= e−rτEQ[ST · 1{ST>X}|Ft]−Xe−rτQ{ST > X|Ft}.

In particular,

c0 = e−rTEQ[ST · 1{ST>X}]−Xe−rTQ{ST > X}.

Now let Q̃ be another probability measure related to Q by the following
Radon–Nikodym derivative

dQ̃
dQ

:= Z, (2.5)

where Z is the random variable defined by

Z := e−rT
ST
S0

= exp
(
−σ

2

2 T + σWQ
T

)
; (2.6)

correspondingly, let us define the Radon–Nikodym derivative process (Zt)0≤t≤T as

Zt = EQ[Z|Ft] (2.7)

with ZT = Z. We note that

EQ[Z] = e−rT
EQ[ST ]
S0

= e−rT erT = 1
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and, in addition, since Q is risk-neutral,

Zt = e−rt
St
S0

= exp
(
−σ

2

2 t+ σWQ
t

)
;

according to [11, Theorem 3.6.1], (Zt)0≤t≤T is an exponential Q-martingale process.
Under the change of measure performed in (2.5), we may prove that

e−rτEQ[ST1{ST>X}|Ft] = St Q̃{ST > X|Ft}. (2.8)

Indeed, by using [11, Lemma 5.2.2], since 1{ST>X} is FT -measurable, we have

St Q̃{ST > X|Ft} = St EQ̃[1{ST>X}|Ft]

= St
EQ[1{ST>X}ZT |Ft]

Zt

= St

EQ
[
1{ST>X} e−rT STS0

∣∣∣∣Ft
]

e−rt StS0

= e−rτEQ[ST1{ST>X}|Ft].

Finally (see just below (2.4)), the Black–Scholes formula for the call option becomes

ct = St Q̃{ST > X|Ft} −Xe−rτ Q{ST > X|Ft}; (2.9)

see also [7, Propostion 2.2.5].
It is clear that the above formula agrees with the classical formulation (1.1) with

Q{ST > X|Ft} = N(d2) and Q̃{ST > X|Ft} = N(d1), as better explained in the
following proposition.

Proposition 2.1. If Q̃ is the measure defined by (2.5), the following properties hold
true:

(i) the discounted process (e−rtSt)0≤t≤T is a Q̃-submartingale,
(ii) if r ≥ 01), the process (St)0≤t≤T is a Q̃-submartingale,
(iii) the Ito process

W Q̃
t := WQ

t −
t∫

0

σ du (0 ≤ t ≤ T ) (2.10)

is a Q̃-Brownian motion. In particular the process (St)0≤t≤T obeys the following
Q̃-dynamics

dSt = (r + σ2)Stdt+ σStdW
Q̃
t , (2.11)

1) We note that in current financial markets there is the possibility of negative or near-zero interest
rates (see, e.g., [1], [4]). However, if r < 0, we can replace r by its absolute value |r|. The occurrence
r = 0 represents the ATM (“at the money”) case.
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(iv) for any t ∈ [0, T ] the (unconditional) Q̃-expectation of St is given by

EQ̃[St] = EQ[S2
t ]

EQ[St]
, (2.12)

i.e., by the ratio between the second and the first moment of St under Q,
(v) for every t ∈]0, T [ one has Q̃{ST > X|Ft} = N(d1).
Proof. (i) By virtue of [11, Lemma 5.2.2], for any s and t satisfying 0 ≤ s ≤ t ≤ T
we compute

EQ̃[e−rtSt|Fs] = EQ[e−rtSt Zt|Fs]
Zs

=
EQ
[
e−2rt S2

t

S0

∣∣∣∣Fs
]

e−rs SsS0

= EQ
[
e−r(2t−s)S

2
t

Ss

∣∣∣∣Fs
]

= EQ
[
e−r(2t−s)Ss exp

(
2
(
r − σ2

2

)
(t− s)− 2σ

√
t− s Y

)∣∣∣∣Fs
]
,

where
Y := −W

Q
t −WQ

s√
t− s ∼ N(0, 1). (2.13)

Since Ss is Fs-measurable and the random variable Y is Fs-independent, we may
avoid conditioning (see, for instance, [12, p. 88]) and therefore the above expectation
EQ̃[e−rtSt|Fs] is equal to

1√
2π

+∞∫

−∞

e−r(2t−s)Ss exp
(

2
(
r − σ2

2

)
(t− s)− 2σ

√
t− s y

)
e−

y2
2 dy

= 1√
2π

+∞∫

−∞

Ss exp(2r(t− s)− r(2t− s)− σ2(t− s)− 2σ
√
t− s y)e−

y2
2 dy

= e−rs
1√
2π

+∞∫

−∞

Ss exp(−σ2(t− s)− 2σ
√

(t− s) y − y2/2) dy

= e−rs
1√
2π

+∞∫

−∞

Sse
−(y+2σ

√
t−s)2+2σ2(t−s)

2 dy

= eσ
2(t−s)e−rsSs

1√
2π

+∞∫

−∞

e−
z2
2 dz = eσ

2(t−s)e−rsSs,

where we have set z := y + 2σ
√
t− s. Since eσ2(t−s) ≥ 1, we finally get

EQ̃[e−rtSt|Fs] ≥ e−rsSs,

i.e., the discounted process (e−rtSt)0≤t≤T is a Q̃-submartingale, as announced.
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(ii) Arguing as in (i), we may conclude that

EQ̃[St|Fs] = e(t−s)(r+σ2)Ss,

where the term e(t−s)(r+σ2) is surely greater than 1 if r ≥ 0. However, the result is
a posteriori quite obvious since, according to (2.11) (yet to be proved), the process
(St)0≤t≤T is a Q̃-geometric Brownian motion.

(iii) The process Zt defined in (2.7) can be written as

Zt = exp
(
−

t∫

0

(−σ) dWQ
u −

1
2

t∫

0

σ2 du

)
,

where EQ[e
1
2

∫ t
0
σ2 du]

< +∞ for any t ∈ [0, T ]. Therefore, applying Girsanov’s Theorem
(see, for instance, [11, Section 5.2]), yields that

W Q̃
t := WQ

t −
t∫

0

σ du (0 ≤ t ≤ T )

is a Q̃-Brownian motion.
In particular, we can derive the dynamics of the process St under Q̃ and obtain

dSt = rStdt+ σStdW
Q
t = (r + σ2)Stdt+ σStdW

Q̃
t

whose solution is explicitly given by

St = S0 exp
((

r + σ2

2

)
t+ σW Q̃

t

)
(0 ≤ t ≤ T ).

(iv) 2) Let us fix t in [0, T ] and recall that the first moment of St under Q is
given by

EQ[St] = ertS0;
therefore (see (2.6))

EQ̃[St] = EQ[St ZT ] = e−rT
EQ[St ST ]

S0
=

EQ
[
S2
t exp

(
−σ2

2 τ − σ
√
τY

)]

ertS0

where Y is defined by (2.13). From the Q-independence of the random variables
appearing in the Q-expectation value it follows that

EQ
[
S2
t exp

(
−σ

2

2 τ − σ√τY
)]

= EQ[S2
t ]EQ

[
exp
(
−σ

2

2 τ − σ√τY
)]
,

2) As an alternative proof, by virtue of [11, Lemma 5.2.1], for any 0 ≤ t ≤ T we have soon

EQ̃[St] = EQ[St Zt] =
EQ[S2

t ]
ertS0

=
EQ[S2

t ]
EQ[St]

,

as claimed.
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where

EQ
[
exp
(
−σ

2

2 τ − σ√τY
)]

= 1√
2π

+∞∫

−∞

exp
(
−σ

2

2 τ − σ√τy
)
e−

y2
2 dy

= 1√
2π

+∞∫

−∞

e−
z2
2 dz = 1,

after setting z := (y + σ
√
τ). The expression (2.12) is now fully established.

(v) Conditioned on Ft (t fixed), on account of (2.11) ST is Q̃-lognormally distributed
with known parameters m := lnSt+

(
r+ σ2

2
)
τ and σ2τ ; consequentely, we can compute

explicitly the probability Q̃{ST > X|Ft} and obtain

Q̃{ST > X|Ft} = 1
σ
√

2πτ

+∞∫

X

1
y

exp
(
− (ln y −m)2

2σ2τ

)
dy;

the change of variable

z := − ln y −m
σ
√
τ

soon entails

Q̃{ST > X|Ft} = 1√
2π

d1∫

−∞

e−
z2
2 dz = N(d1),

which accomplishes the proof.

Remark 2.2. We believe that the formulation (2.9) is rather significant because
captures judiciously the difference between N(d1) and N(d2) appearing in the classic
Black–Scholes formula (1.1). By virtue of (2.9), both N(d1) and N(d2) represent the
(conditional) probability of the same event {ST > X} under the two different (but
equivalent) measures Q̃ and Q. In other words, it is just a change of measure that
distinguishes N(d1) from N(d2). Incidentally observe that N(d1) > N(d2) (because
d1 > d2) and, consequently, Q̃{ST > X|Ft} > Q{ST > X|Ft}.

As clearly discussed in [8], N(d1) takes in charge not only the probability of
exercise (or, equivalently, the probability of the event {ST > X} which is represented
by N(d2)), but also the fact that the exercise or, rather, the receipt of the stock on
exercise, is strongly dependent on the conditional future values of the stock price at
the maturity. Consequently, in evaluating N(d1), we must consider stock price higher
than the exercise price as a given condition while computing the expected future value
of the stock at maturity. Conversely, as already said, N(d2) is merely the risk-neutral
probability that the option will be exercised at T and depends only on the event
{ST > X}.
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We point out that in our analysis, however, unlike [8], the approach is quite different
and relies upon a change of measure from the risk-neutral probability Q to Q̃, which
equals to passing through a change of numèraire (for more details upon this issue, see,
e.g., [11, Chapter IX], [7, Chapters I and II] and [5]). Specifically, in the case of the
risk-neutral measure Q the numèraire is the money market account, i.e.,

Mt = ert, (2.14)

for any t ∈ [0, T ], whereas, for the measure Q̃, the numèraire becomes

Nt = St, (2.15)

i.e., the stock price itself. As a confirmation, one may easily verify that
1. the discounted process e−rtNt is a Q-martingale,
2. the Radon–Nikodym derivative that effects the change of measure from the

numèraire-measure pair (N, Q̃) to the other pair (M,Q) is given by

dQ̃
dQ

= NT
N0
· M0
MT

,

which agrees with (2.5) and (2.6),
3. the volatilities of Mt and Nt are (obviously) 0 and σ2, respectively,
4. the discounted process (e−rtSt)0≤t≤T is a submartingale under Q̃ as well as under

the objective measure P, which is quite realistic for (real) risky markets.
Remark 2.3. It is worthwhile noting that from (2.8) we easily get

EQ[ST1{ST>X}|Ft] = EQ[ST |Ft] · EQ̃[1{ST>X}|Ft]. (2.16)

In other words, the random variables ST and 1{ST>X} are not Q-independent (as one
might expect, since EQ[1{ST>X}|Ft] = N(d2)) and the Q-expectation of their product
may be expressed as the product of their expectations under Q and Q̃, respectively.

3. THE DISCRETE CASE

3.1. THE ONE-PERIOD BINOMIAL MODEL

We consider the one-period binomial model where t = {0, 1}. Let S0 the initial stock
price, known at time t = 0. The stock price at time t = 1 is a random variable
defined as

S1 =
{
Su1 := uS0,

Sd1 := dS0,

where d < 1 < u and Su1 and Sd1 denote the stock price at time 1. Let p be the
real probability that S1 = Su1 and assume that the no-arbitrage condition holds true,
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i.e., d < 1 + r < u. Consider a derivative security, for instance a call option, with
payoff (S1 −X)+, X being the strike price. Our aim is to compute the initial price
of this derivative in order to replicate an investment portfolio made by risky assets.
Suppose that at time t = 0 we start with wealth X0, buy ∆0 shares of stock S0 and
invest the remaining part at a risk-free rate r. The future value of our portfolio of
stock and money market account is given by

X1 = ∆0S1 + (1 + r)(X0 −∆0S0) = (1 + r)X0 + ∆0(S1 − (1 + r)S0).

Define cu1 := (Su1 − X)+ as the value of the call if the stock price goes up, and
cd1 := (Sd1 −X)+ as the value of the call if the stock price goes down. Observe that at
time 0 the values cu1 and cd1 are known but we do not know which of them will really
happen. The replication portfolio has to guarantee that

{
1

1+r c
u
1 = X0 + ∆0

( 1
1+rS

u
1 − S0

)
,

1
1+r c

d
1 = X0 + ∆0

( 1
1+rS

d
1 − S0

)
.

(3.1)

By solving the above system in the unknowns X0 and ∆0, we can find the value of
X0, namely the initial price c0 of the derivative security for the short position, as well
as ∆0; specifically one finds

X0 = c0 = 1
1 + r

[cu1pQ + cd1(1− pQ)], (3.2)

and
∆0 = cu1 − cd1

Su1 − Sd1
, (3.3)

where Q := (pQ, 1− pQ) with
pQ := 1 + r − d

u− d (3.4)

is the risk-neutral probability. If we consider the interesting case3) dS0 < X < uS0,
in which the option will be exercised if the stock price goes up, and it will expire
worthless if the stock price goes down, i.e., cu1 = uS0 −X and cd1 = 0, (3.2) becomes

c0 = 1
1 + r

[S0p
Qu−XpQ]. (3.5)

Exactly as in Section 2 (see (2.5)–(2.7)), if we set

pQ̃ := 1
1 + r

Su1
S0
pQ = 1

1 + r
upQ (3.6)

3) The other cases are trivial. Indeed, if X ≤ dS0, we have cu
1 = uS0 −X, cd

1 = dS0 −X and (3.2)
gives

c0 = S0 −
1

1 + r
X,

i.e., pQ = 1 and N(d1) = N(d2) = 1. On the converse, if uS0 ≤ X, we have cu
1 = cd

1 = c0 = 0, i.e.,
pQ = 0 and N(d1) = N(d2) = 0. See, also, Remark 3.1.
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and define correspondingly Q̃ = (pQ̃, 1−pQ̃) as the following Radon–Nikodym derivative
Q̃
Q

:= S1
(1 + r)S0

, (3.7)
then (3.5) becomes, in turn,

c0 = S0p
Q̃ − 1

1 + r
XpQ, (3.8)

which resembles formula (2.9) for the continuous case.
Remark 3.1. By comparing (2.9) and (3.8) it is clear that N(d1) and N(d2)
correspond to pQ̃ and pQ, respectively. In particular, the no-arbitrage condition en-
tails u

1+r > 1, which implies pQ̃ > pQ; this observation confirms once again that
N(d1) > N(d2).

Analogously to Proposition 2.1, we are now in a position to prove the next result.
Proposition 3.2. The following properties hold true:
(i) the discounted stock price process

(
Si

(1+r)i
)
i=0,1 is a Q̃-submartingale,

(ii) if r ≥ 0, the stock price process (Si)i=0,1 is a Q̃-submartingale,
(iii) the (unconditional) Q̃-expectation of S1 is given by

EQ̃[S1] = EQ[S2
1 ]

EQ[S1] , (3.9)

i.e., by the ratio between the second and the first moment of S1 under Q,
(iv) the probability pQ̃ is different from the hedge-ratio (see (3.3))

∆0 = cu1 − cd1
Su1 − Sd1

.

Proof. As a first step, let us compute EQ̃[S1]. To this aim, observe that the explicit
expression of pQ̃ is given by

pQ̃ = u

1 + r
pQ = u

1 + r
· 1 + r − d

u− d , (3.10)

whence

1− pQ̃ = (1 + r)(u− d)− u(1 + r − d)
(1 + r)(u− d) = d

1 + r
· u− 1− r

u− d = d

1 + r
(1− pQ). (3.11)

By definition of EQ̃[·], we easily compute4)

EQ̃[S1] = Su1 p
Q̃ + Sd1 (1− pQ̃) = uSu1

1 + r
pQ + dSd1

1 + r
(1− pQ)

= (Su1 )2

(1 + r)S0
pQ + (Sd1 )2

(1 + r)S0
(1− pQ) = EQ

[
S2

1
(1 + r)S0

]
.

(3.12)

4) We can also derive EQ̃[S1] noting that

EQ̃[S1] = EQ
[

S1
Q̃
Q

]
= EQ

[
S2

1
(1 + r)S0

]
.
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(i) Since S0 is known at time 0, by using (3.12) we plainly have

EQ̃
0

[
S1

1 + r

]
= EQ̃

[
S1

1 + r

]
=

EQ
[(

S1
1+r

)2]

S0
≥

(
EQ
[
S1

1+r

])2

S0

=

(
S0

1+r (upQ + d(1− pQ))
)2

S0
= S2

0
S0

= S0

(
= S0

(1 + r)0

)
,

where we have used the Jensen’s inequality and the fact that the conditional expectation
based on no information is simply the (unconditional) expectation, i.e., E0[·] = E[·].
This proves that the discounted stock price process is a Q̃-submartingale.

(ii) By means of similar calculations as performed in i), it is easy to check that

EQ̃
0 [S1] ≥ (1 + r)S0,

as well, where the term (1 + r) is surely greater than 1 if r ≥ 0.
(iii) The equality (3.9) follows directly from (3.12), since the expression of the first

moment of S1 under Q is given by

EQ[S1] = Su1 p
Q + Sd1 (1− pQ) = (upQ + d(1− pQ))S0 = (1 + r)S0.

(iv) Taking into account the last footnote 3 (page 460), the hedge-ratio in the
interesting case dS0 < X < uS0 is given by (3.3), whereas the probability pQ̃ is defined
in (3.6). These two expressions are equal only when

X = S0 ud

1 + r
,

otherwise they are different. The proof is now complete.

3.2. THE MULTI-PERIOD BINOMIAL MODEL

In the multi-period binomial model we consider N ≥ 2 periods and in each of them the
stock price will either go up or down by the factors u and d, respectively. In particular,
at time t = n ≤ N we have n+1 distinct configurations for Sn, which we write down as

Sρ
(i,n−i)(u,d)
n := uidn−iS0

for any integer i ∈ {0, 1, . . . , n}, where ρ(i,n−i)(u, d) denotes any permutation with
repetition of the n-tuple

(u, . . . , u︸ ︷︷ ︸
i

, d, . . . , d︸ ︷︷ ︸
n−i

),

and corresponds to choosing i “up moves” (and n− i “down moves”) for a total of
(
n
i

)

different paths in the tree. More generally, for any i ∈ {0, . . . , n} and k ≤ n, taking
the step k as the starting point, we have

Sρ
(i,n−i)(u,d)
n = S

ρ(j,k−j)(u,d)
k ui−jd(n−k)−(i−j),



Option pricing formulas under a change of numèraire 463

where j ∈ {(i − (n − k))+, . . . ,min(i, k)}. Correspondingly, for any k satisfying
0 ≤ k ≤ n ≤ N the notation c

ρ(i,k−i)(u,d)
k denotes one of the possible k + 1 values

of the random variable ck, i.e., one of the possible call prices for a fixed step k in the
binomial tree. For a better understanding one can see Figure 1.

S
(u,u,u)
3 = u3S0

S
(u,u)
2 = u2S0

Su
1 = uS0 S

(u,u,d)
3 = S

(u,d,u)
3 = S

(d,u,u)
3 = u2dS0

S0 S
(u,d)
2 = S

(d,u)
2 = udS0

Sd
1 = dS0 S

(d,d,u)
3 = S

(d,u,d)
3 = S

(u,d,d)
3 = ud2S0

S
(d,d)
2 = d2S0

S
(d,d,d)
3 = d3S0

Fig. 1. Stock price tree for N = 3

As in the one period case, our aim is the replication of a risky portfolio by means
of some derivative security, for instance a call option. For each period n ≤ N suppose
we buy ∆n shares of stock and invest the remaining part at a risk-free rate r (for
more details, see, e.g., [10, Section 1.2]). Similarly to the one-period model explained
in Subsection 3.1, we see that the price cn−1 for the short position is expressed
recursively by

c
ρ(i,(n−1)−i)(u,d)
n−1 = 1

1 + r
[cρ

(i+1,n−(i+1))(u,d)
n pQ + cρ

(i,n−i)(u,d)
n (1− pQ)] (3.13)

for any i ∈ {0, . . . , n− 1}, where the risk-neutral probability Q = (pQ, 1− pQ) is still
equal to (3.4). By induction, for any n ∈ {1, . . . , N} it is easy to see that

c0 = 1
(1 + r)n

[ n∑

i=0

(
n

i

)
cρ

(i,n−i)(u,d)
n (pQ)i(1− pQ)n−i

]
. (3.14)

On the other hand, if m0 denotes the minimum number of upward moves necessary
for the stock to end in the money at time n, (3.14) may be rephrased as

c0 = 1
(1 + r)n

[ n∑

i=m0

(
n

i

)
(uidn−iS0 −X)(pQ)i(1− pQ)n−i

]
,
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which, rearranging the terms, becomes also

c0 = 1
(1 + r)n

[ n∑

i=m0

(
n

i

)
uidn−i(pQ)i(1− pQ)n−iS0 −X

n∑

i=m0

(
n

i

)
(pQ)i(1− pQ)n−i

]
.

(3.15)
Now let us introduce the complementary binomial distribution

Φ(pQ, n,m0) :=
n∑

i=m0

(
n

i

)
(pQ)i(1− pQ)n−i (3.16)

which represents the probability that the stock price will go up at least m0 times
so that the option will be exercised at time n, and corresponds to N(d2). Therefore,
by using the measure pQ̃ defined in (3.6), (3.15) becomes

c0 = S0Φ(pQ̃, n,m0)− 1
(1 + r)nXΦ(pQ, n,m0), (3.17)

where again we have set

Φ(pQ̃, n,m0) :=
n∑

i=m0

(
n

i

)
(pQ̃)i(1− pQ̃)n−i

= 1
(1 + r)n

n∑

i=m0

(
n

i

)
uidn−i(pQ)i(1− pQ)n−i;

this last term corresponds to N(d1) of the Black–Scholes formula.
Incidentally observe that, as a matter of fact, for a fixed n, 0 ≤ n ≤ N ,

c0 = S0Q̃{Sn > X} − X

(1 + r)nQ{Sn > X},

and the event {Sn > X} is evaluated under two different measures; thus the analogy
with the continuous case is now quite evident.

More generally, for any k ≤ n, it may be proved that

ck = SkQ̃{Sn > X|Fk} −
X

(1 + r)n−kQ{Sn > X|Fk}.
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Indeed, arguing as before concerning the equality (3.15) with slight modifications
leads to

ck = 1
(1 + r)n−k

[ n−k∑

j=mk

(
n− k
j

)(
Sn −X

)
(pQ)j(1− pQ)(n−k)−j

]

= 1
(1 + r)n−k

[ n−k∑

j=mk

(
n− k
j

)(
Sku

jd(n−k)−j −X
)

(pQ)j(1− pQ)(n−k)−j
]

= Sk

n−k∑

j=mk

(
n− k
j

)
(pQ̃)j(1− pQ̃)(n−k)−j

− X

(1 + r)n−k
n−k∑

j=mk

(
n− k
j

)
(pQ)j(1− pQ)(n−k)−j ,

where mk is the minimum number of upward moves necessary for the option to end in
the money at time n starting from the step k. Obviously ck = 0 if mk > n − k; see
also [7, Proposition 2.1.2].

As an improvement, a closed formula5) for the value of the call option at each
node of the binomial tree would be desiderable; indeed, for fixed n, k and i satisfying
0 ≤ i ≤ k ≤ n ≤ N , a careful and non trivial inspection through the binomial tree
shows that

c
ρ(i,k−i)(u,d)
k

= 1
(1 + r)n−k

[ n−k∑

j=mi
k

(
n− k
j

)(
Sρ

(i+j,n−(i+j))(u,d)
n −X

)
(pQ)j(1− pQ)(n−k)−j

]

= 1
(1 + r)n−k

n−k∑

j=mi
k

(
n− k
j

)
S
ρ(i,k−i)(u,d)
k ujd(n−k)−j(pQ)j(1− pQ)(n−k)−j

− X

(1 + r)n−k
n−k∑

j=mi
k

(
n− k
j

)
(pQ)j(1− pQ)(n−k)−j

= S
ρ(i,k−i)(u,d)
k

n−k∑

j=mi
k

(
n− k
j

)
(pQ̃)j(1− pQ̃)(n−k)−j

− X

(1 + r)n−k
n−k∑

j=mi
k

(
n− k
j

)
(pQ)j(1− pQ)(n−k)−j .

5) Non iterative closed formula.
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In the formula above mi
k is a realization of the random variable mk; more formally

mk =
{
m0, if k = 0,
mi
k ∈ {0, . . . , (m0 − i)+} ∪ {+∞}, if k > 0, 0 ≤ i ≤ k,

where m0 is the same (deterministic) positive integer appearing in (3.15). Obviously
c
ρ(i,k−i)(u,d)
k = 0 if mi

k = +∞.
Summing up, we can write

ck = SkΦ(pQ̃, n− k,mk)− X

(1 + r)n−kΦ(pQ, n− k,mk) (3.18)

and

c
ρ(i,k−i)(u,d)
k = S

ρ(i,k−i)(u,d)
k Φ(pQ̃, n− k,mi

k)− X

(1 + r)n−kΦ(pQ, n− k,mi
k), (3.19)

as generalizations of (3.17).

Remark 3.3. The importance of the last formula (3.19) lies on the fact that it allows
to compute the call price cρ

(i,k−i)(u,d)
k at any of the nodes i at time k only knowing the

stock price Sρ
(i,k−i)(u,d)
k corresponding to the same node, together with the realization

mi
k. This procedure presents a remarkable advantage especially when dealing with

binomial trees which price long expiring options and/or which use a huge number of
time steps in order to get a nice accuracy. Specifically, from a computational point
of view, while it is necessary to move in the tree “forward” until the end at time n for
the stock price, it is pointless the full “backward” procedure from n up to time k, the
unique information useful to compute mi

k being the stock price (payoff) at time n.

The following proposition provides further information about the probability
measure Q̃ = (pQ̃, 1− pQ̃).

Proposition 3.4. For every n ≤ N the (unconditional) Q̃-expectation of Sn is
given by

EQ̃[Sn] = EQ[S2
n]

EQ[Sn] , (3.20)

i.e., by the ratio between the second and the first moment of Sn under Q.
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Proof. Let us start by computing EQ̃[Sn]. We know that uidn−iS0 = S
ρ(i,n−i)(u,d)
n

and thus

EQ̃[Sn] =
n∑

i=0

(
n

i

)
Sρ

(i,n−i)(u,d)
n (pQ̃)i(1− pQ̃)n−i

= S0

n∑

i=0

(
n

i

)
uidn−i(pQ̃)i(1− pQ̃)n−i

= S0
(1 + r)n

n∑

i=0

(
n

i

)
(uidn−i)2(pQ)i(1− pQ)n−i

= S0
(1 + r)n

n∑

i=0

(
n

i

)(
S
ρ(i,n−i)(u,d)
n

S0

)2
(pQ)i(1− pQ)n−i

= 1
(1 + r)nS0

n∑

i=0

(
n

i

)
(Sρ

(i,n−i)(u,d)
n )2(pQ)i(1− pQ)n−i.

Consequently

EQ̃[Sn] = EQ
[

S2
n

S0(1 + r)n

]
, (3.21)

whence the equality (3.20) directly follows, since the expression of the first moment
of Sn under Q is given by

EQ[Sn] = S0

n∑

i=0

(
n

i

)
uidn−i(pQ)i(1−pQ)n−i = S0(upQ+d(1−pQ))n = S0(1+r)n.

In analogy with the one-period binomial model, our next goal is to look for another
equivalent measure under which the discounted process is a submartingale.

The underlying idea is to extend the definition of Q̃ in (3.7) to the multi-period
binomial model with N ≥ 2 steps. To this purpose, we are naturally led to consider
the measure Q̂ related to Q by the following Radon–Nikodym derivative

Q̂
Q

:= Z, (3.22)

where Z is the random variable defined by

Z := SN
(1 + r)NS0

. (3.23)

For any k ≤ N define the Radon–Nikodym derivative process as

Zk = EQ
k [Z] (3.24)

with ZN = Z. One readily obtains

EQ[Z] = EQ[SN ]
(1 + r)NS0

= (1 + r)NS0
(1 + r)NS0

= 1
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and
Zk = Sk

(1 + r)kS0
,

since the discounted process is a Q-martingale. Obviously Q̂ ≡ Q̃ if N = 1.
Now we may state the next proposition concerning the newly defined measure Q̂.

Proposition 3.5. The following properties hold true:

(i) the discounted stock price process
(

Si
(1+r)i

)
0≤i≤N is a Q̂-submartingale,

(ii) if r ≥ 0, the stock price process (Si)0≤i≤N is a Q̂-submartingale,
(iii) for any n ≤ N the (unconditional) Q̂-expectation of Sn is given by

EQ̂[Sn] = EQ[S2
n]

EQ[Sn] , (3.25)

i.e., by the ratio between the second and the first moment of Sn under Q.
In particular, the expectation of Sn is the same under the probabilities Q̃ and
Q̂ (see Proposition 3.4).

Proof. Fix n and k such that 0 ≤ k ≤ n ≤ N .
(i) According to [10, Lemma 3.2.6] and with the help of Jensen’s inequality, one has

EQ̂
k

[
Sn

(1 + r)n

]
=

EQ
k

[
Sn

(1+r)n Zn

]

Zk
=

EQ
k

[(
Sn

(1+r)n

)2]

Sk
(1+r)k

≥

(
EQ
k

[
Sn

(1+r)n

])2

Sk
(1+r)k

=

(
Sk

(1+r)k

)2

Sk
(1+r)k

= Sk
(1 + r)k ,

since the discounted stock price process is a Q-martingale.
(ii) Arguing as in (i), it is fairly easy to verify that

EQ̂
k [Sn] ≥ (1 + r)n−kSk,

where surely (1 + r)n−k ≥ 1 if r ≥ 0.
(iii) By virtue of [10, Lemma 3.2.5], an easy calculation shows that

EQ̂[Sn] = EQ[Sn Zn] = EQ[S2
n]

(1 + r)nS0
= EQ[S2

n]
EQ[Sn] ,

as announced.

There are alternative ways to prove Proposition 3.5, based upon the general
properties of the conditional expectation under a change of measure. We present these
proofs in the Appendix A with the help of a preliminary lemma.
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APPENDIX A. ALTERNATIVE PROOFS OF (i) AND (iii) IN PROPOSITION 3.5

Consider a discrete Bernoulli random variable U with parameter p and range {u, d}
and recall that
1. E[U ] = up+ d(1− p),
2. E[Uh] = uhp+ dh(1− p) (h ≥ 2),
3. Var(U) = p(1− p)(u− d)2.
It is possible to express recursively the stock price process Sn in the N -times binomial
model starting from S0 by putting

Sn := S0 U1 · . . . · Un (n ≥ 1), (A.1)

where the Ui’s are i.i.d. random variables with a Bernoulli distribution with parameter
pQ and range {u, d}; for simplicity we write Sn = Sn−1U where U stands for Un. For
any 0 ≤ k ≤ n ≤ N , keeping in mind that now EQ[U ] = upQ + d(1− pQ) = 1 + r, it is
easy to verify that
1. EQ

k [Sn] = Sk(1 + r)n−k,

2. EQ
k [Shn] = Shk

(
EQ[Uh]

)n−k
(h ≥ 2),

3. VarQk (Sn) = EQ
k [S2

n]− (EQ
k [Sn])2 = S2

k

(
(u2pQ + d2(1− pQ))n−k − (1 + r)2(n−k)

)
.

Before proceeding further, we need the following lemma which perhaps covers an interest
on its own.
Lemma A1. Let us consider the multi-period binomial model with N ≥ 2 steps and
denote by Sn the stock price at time n ≤ N , defined recursively by (A.1). Then, for
any 0 ≤ k ≤ n ≤ N , if Q is the risk-neutral measure and r ≥ 0 is the risk-free interest
rate, we have the following properties:
(i) the sequence

(
VarQk (Sn)

)
0≤n≤N is increasing;

(ii) for any m ∈ {0, . . . , N} with n < m we have
(iia) EQ

k [Sn Sm] = (1 + r)m−n · EQ
k [S2

n],
(iib) VarQk (Sn Sm) = S4

k

(
(EQ[U4])n−k · (EQ[U2])m−n

− (EQ[U2])2(n−k) · (1 + r)2(m−n)),
(iic) covQk (Sn, Sm) = (1 + r)m−n ·VarQk (Sn) and therefore covQk (Sn, Sm) ≥ 0,
(iid) if ρ denotes the (auto-)correlation coefficient, then

ρQk (Sn, Sm) = (1 + r)m−n ·
√

VarQk (Sn)
VarQk (Sm)

.

Proof. (i) For any n ≥ 1, due to the independence of the random variables Sn and U
in Sn+1 = SnU , it follows that6)

VarQk (Sn+1) = (EQ
k [Sn])2 VarQ(U) + VarQk (Sn)EQ[U2] ≥ VarQk (Sn)

6) Each Ui is obviously independent of Fk.
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since

(EQ
k [Sn])2 VarQ(U) ≥ 0 and EQ[U2] ≥ (EQ[U ])2 = (1 + r)2 ≥ 1.

(ii) For any m ∈ {0, . . . , N}, if n < m, a direct computation leads to:

(iia) EQ
k [SnSm] = EQ

k [(S0 U1 · . . . · Un)2 · Un+1 · . . . · Um] = (1 + r)m−n · EQ
k [S2

n],

(iib) VarQk (SnSm) = VarQk ((S0 U1 · . . . · Un)2 · Un+1 · . . . · Um)
= S4

k EQ[(Uk+1 · . . . · Un)4]EQ[(Un+1 · . . . · Um)2]
− S4

k (EQ[(Uk+1 · . . . · Un)2 · Un+1 · . . . · Um])2

= S4
k

(
(EQ[U4])n−k · (EQ[U2])m−n

− (EQ[U2])2(n−k) · (1 + r)2(m−n)
)
,

(iic) covQk (Sn, Sm) = EQ
k [S2

n · Un+1 · . . . · Um]− EQ
k [Sn]EQ

k [Sn · Un+1 · . . . · Um]
= EQ

k [S2
n]EQ

k [Un+1 · . . . · Um]− (EQ
k [Sn])2 EQ

k [Un+1 · . . . · Um]
= (1 + r)m−n · (EQ

k [S2
n]− (EQ

k [Sn])2) = (1 + r)m−n ·VarQk (Sn),

(iid) ρQk (Sn, Sm) = covQk (Sn, Sm)√
VarQk (Sn) VarQk (Sm)

= (1 + r)m−n ·VarQk (Sn)√
VarQk (Sn) VarQk (Sm)

= (1 + r)m−n ·
√

VarQk (Sn)
VarQk (Sm)

.

The proof is now complete.

Remark A2. If (Wt)t≥0 is a Brownian motion, then for any s and t satisfying
0 ≤ s ≤ t it is well-known that

(i) Var(Wt) ≥ Var(Ws),
(ii) cov(Wt,Ws) = Var(Ws),
(iii) ρ(Wt,Ws) =

√
Var(Ws)
Var(Wt) .

A quick look to the previous lemma highlights clearly the strong interplay between
the discrete process (Sn)0≤n≤N and the continuous process (Wt)t≥0.

Now we present the following alternative proofs of (i) and (iii) in Proposition 3.5,
taking into account the definition (3.24) and the subsequent observation.
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Proof. Fix n and k such that 0 ≤ k ≤ n ≤ N .
(i) By virtue of Lemma A1-(iic) and the Bayes formula, one gets

EQ̂
k

[
Sn

(1 + r)n

]
=

EQ
k

[
Sn

(1+r)n ZN

]

Zk

=
EQ
k

[
Sn

(1+r)n

]
EQ
k

[
SN

(1+r)N

]
+ covQk

(
SnSN

(1+r)n+N

)

Sk
(1+r)k

=

(
Sk

(1+r)k

)2
+ (1+r)N−n

(1+r)n+N ·VarQk (Sn)
Sk

(1+r)k
≥

(
Sk

(1+r)k

)2

Sk
(1+r)k

= Sk
(1 + r)k ,

since the discounted stock price is a Q-martingale.
(i)’ (alternative proof) Again the Bayes formula implies

EQ̂
k

[
Sn

(1 + r)n

]
=

EQ
k

[
Sn

(1+r)n ZN

]

Zk
=

EQ
k

[
Sn SN

(1+r)n+N

]

Sk
(1+r)k

,

where “taking out what is known” and Jensen’s inequality, together with the indepen-
dence of the Ui’s, yield

EQ
k

[
SnSN

(1 + r)n+N

]
= S2

k

(1 + r)n+N EQ[U2
k+1 · . . . · U2

n · Un+1 · . . . · UN ]

= S2
k

(1 + r)n+N EQ[U2
k+1] · . . . · EQ[U2

n] · EQ[Un+1] · . . . · EQ[UN ]

= S2
k

(1 + r)n+N (EQ[U2])n−k (1 + r)N−n

≥ S2
k

(1 + r)n+N (EQ[U ])2(n−k) (1 + r)N−n

= S2
k

(1 + r)n+N (1 + r)2(n−k) (1 + r)N−n = S2
k

(1 + r)2k .

Hence we can conclude that

EQ̂
k

[
Sn

(1 + r)n

]
≥

S2
k

(1+r)2k

Sk
(1+r)k

= Sk
(1 + r)k ,

as desired.
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(iii) By virtue of Lemma A1-(iia), one immediately gets

EQ̂[Sn] = EQ[Sn ZN ] = EQ[SnSN ]
(1 + r)NS0

= (1 + r)N−n · EQ[S2
n]

(1 + r)NS0
= EQ[S2

n]
(1 + r)nS0

= EQ[S2
n]

EQ[Sn] ,

and the result follows.
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