PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

DSSA+: distributed collision avoidance algorithm in an environment where both course and speed changes are allowed

Treść / Zawartość
Identyfikatory
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
Distributed Stochastic Search Algorithm (DSSA) is one of state-of-the-art distributed algorithms for the ship collision avoidance problem. In DSSA, whenever a ship encounters with any number of other ships (neighboring ships), she will select her course with a minimum cost after coordinating their decisions with her neighboring ships. The original DSSA assumes that ships can change only their courses while keeping their speed considering kinematic properties of ships in general. However, considering future possibilities to address more complex situations that may cause ship collision or to deal with collision of other vehicles (such as mobile robots or drones), the options of speed changes are necessary for DSSA to make itself more flexible and extensive. In this paper, we present DSSA+, as a generalization of DSSA, in which speed change are naturally incorporated as decision variables in the original DSSA. Experimental evaluations are provided to show how powerful this generalization is.
Twórcy
autor
  • Kobe University, Kobe, Japan
autor
  • Kobe University, Kobe, Japan
autor
  • Kobe University, Kobe, Japan
autor
  • Kobe University, Kobe, Japan
Bibliografia
  • 1. Hu Q., Yang C., Chen H., Xiao B.: Planned Route Based Negotiation for Collision Avoidance Between Vessels. TransNav, the International Journal on Marine Navigation and Safety of Sea Transportation, Vol. 2, No. 4, pp. 363-368, 2008
  • 2. Kim, D., Hirayama, K., & Park, G. 2014. Collision Avoidance in Multiple-ship Situations by Distributed Local Search. Journal of Advanced Computational Intelligence and Intelligent Informatics 18(5): 839-848. - doi:10.20965/jaciii.2014.p0839
  • 3. Kim D., Hirayama K., Okimoto T.: Ship Collision Avoidance by Distributed Tabu Search. TransNav, the International Journal on Marine Navigation and Safety of Sea Transportation, Vol. 9, No. 1, doi:10.12716/1001.09.01.03, pp. 23-29, 2015
  • 4. Kim, D., Hirayama, K., & Okimoto, T. 2017. Distributed Stochastic Search Algorithm for Multi-ship Encounter Situations. The Journal of Navigation 70(4): 699-718. - doi:10.1017/S037346331700008X
  • 5. Lamb, W.G.P. & Hunt, J.M. 1995. Multiple Crossing Encounters. The Journal of Navigation 48(1): 105-113. - doi:10.1017/S0373463300012546
  • 6. Lamb, W.G.P. & Hunt, J.M. 2000. Multiple Encounter Avoidance Manoeuvres. The Journal of Navigation, 53(1): 181-186. - doi:10.1017/S0373463399008565
  • 7. Lazarowska, A. 2015. Ship’s Trajectory Planning for Collision Avoidance at Sea Based on Ant Colony Optimisation. The Journal of Navigation 68(2): 291-307. - doi:10.1017/S0373463314000708
  • 8. Lee, S., Kwon, K. & Joh, J. 2004. A Fuzzy Logic for Autonomous Navigation of Marine Vehicles Satisfying COLREG Guidelines. International Journal of Control, Automation and Systems, 2(2): 171-181.
  • 9. Szlapczynski, R. 2011. Evolutionary Sets of Safe Ship Trajectories: A New Approach to Collision Avoidance. The Journal of Navigation 64(1): 169-181. - doi:10.1017/S0373463310000238
  • 10. Szlapczynski, R. 2015. Evolutionary Planning of Safe Ship Tracks in Restricted Visibility. The Journal of Navigation 68(1): 39-51. - doi:10.1017/S0373463314000587
  • 11. Tsou, M. & Hsueh, C. 2010. The Study of Ship Collision Avoidance Route Planning by Ant Colony Algorithm. Journal of Marine Science and Technology 18(5): 746-756.
  • 12. Tsou, M., Kao, S. & Su, C. 2010. Decision Support from Genetic Algorithms for Ship Collision Avoidance Route Planning and Alerts. The Journal of Navigation 63(1): 167-182. - doi:10.1017/S037346330999021X
  • 13. Zhang, W., Wand G., Xing, Z. & Wittenburg, L. 2005. Distributed Stochastic Search and Distributed Breakout: Properties, Comparison and Applications to Constraint Optimization Problem in Sensor Networks. Artificial Intelligence 161(1–2): 55–87. - doi:10.1016/j.artint.2004.10.004
Uwagi
Opracowanie rekordu w ramach umowy 509/P-DUN/2018 ze środków MNiSW przeznaczonych na działalność upowszechniającą naukę (2019).
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-4982075b-0fea-48ef-85e8-e09320a4f071
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.