
117

1 INTRODUCTION

According to statistics of ship accidents released by
the Japan Transport Safety Board of the Ministry of
Land, Infrastructure, Transport and Tourism, there
are more than 200 ship collision accidents each year in
Japanese waters. Since human, economic and
environmental damage caused by a ship collision
accident will be enormous, several legal or technical
measures have been taken at present.

One measure is the COLREG rules, which are
international operation rules to prevent ship collisions
enacted in 1972 and partial revision has continued
thereafter. However, since these rules basically set
action guidelines in the so-called one-to-one situation
where one ship faces another ship, they do not work
well in a narrow area nearby a large port, where
many ships are likely to get congested.

As another measure to prevent collisions, vessel
traffic service (VTS) centers have been established on
the coast of narrow and congested sea area, who
provide each ship with instructions on the safe and
efficient movement. However, in order to deal with
dangerous and emergent situations, quick and proper
instructions must be made, which is very challenging
even for experienced marine traffic controllers.
Furthermore, the cost of maintaining VTS centers is
tremendously high.

In order to support decision making by ship
officers, communication systems called automatic
radar plotting aid (ARPA) and automatic
identification system (AIS) are already working on
board. ARPA is the system to plot the positions of
neighboring ships, which are obtained through radar,
on screen, while AIS is the system that enables ships
to exchange various information such as id, types,
positions, speeds, destinations, with their neighboring

DSSA+: Distributed Collision Avoidance Algorithm in an
Environment where Both Course and Speed Changes are
Allowed

K. Hirayama, K. Miyake, T. Shiota & T. Okimoto
Kobe University, Kobe, Japan

ABSTRACT: Distributed Stochastic Search Algorithm (DSSA) is one of state-of-the-art distributed algorithms
for the ship collision avoidance problem. In DSSA , whenever a ship encounters with any number of other
ships (neighboring ships), she will select her course with a minimum cost after coordinating their decisions
with her neighboring ships. The original DSSA assumes that ships can change only their courses while
keeping their speed considering kinematic properties of ships in general. However, considering future
possibilities to address more complex situations that may cause ship collision or to deal with collision of other
vehicles (such as mobile robots or drones), the options of speed changes are necessary for DSSA to make
itself more flexible and extensive. In this paper, we present DSSA , as a generalization of DSSA , in which
speed change are naturally incorporated as decision variables in the original DSSA . Experimental
evaluations are provided to show how powerful this generalization is.

http://www.transnav.eu

the International Journal
on Marine Navigation
and Safety of Sea Transportation

Volume 13
Number 1

March 2019

DOI: 10.12716/1001.13.01.11

118

ships. For ships that meet certain criteria, installation
of AIS is internationally obligatory.

Kim and others have proposed the Distributed
Stochastic Search Algorithm (DSSA) with the aim of
realizing complete automatic ship collision avoidance
(Kim et.al. 2017). In DSSA , ships having
communication function such as AIS exchange their
intentions (future plans of actions) of each other, and
automatically decide their courses to avoid collision
without relying on any central control like a VTS
center.

Since there is no brake on the ship, the speed
cannot be changed rapidly in principle. Therefore, in
DSSA , it was assumed that the ship would only
change the course while keeping the speed to avoid
collision. However, in consideration of the progress of
vessel maneuvering technology by using controllable
pitch propellers and the necessity to more effectively
avoid collision, we extend DSSA in this paper so
that ships can change both course and speed.

The remaining part of this paper is structured as
follows. Section 2 mentions some related work on
computational approaches to ship collision avoidance.
Section 3 gives our general framework on distributed
ship collision avoidance and one of its latest
algorithms, Distributed Stochastic Search Algorithm
(DSSA). Section 4 presents DSSA+, as a
generalization of DSSA , and followed by
experimental evaluation showing its effectiveness in
Section 5. Finally, Section 6 concludes this work.

2 RELATED WORK

Several computational methodologies for realizing
automatic ship collision avoidance have been
proposed. Most of them deal with one-on-one or one-
to-many situations (Lamb and Hunt 1995; Lamb and
Hunt 2000; Lee et.al. 2004; Hu et al. 2008; Tsou &
Hsueh 2010; Tsou, et.al. 2010; Lazarowska 2015), and
very few studies have explicitly dealt with many-to-
many situations, where they simultaneously control
multiple ships that encountered with each other.
Although notable exceptions are the work on
evolutionary algorithm for computing multi-ship
trajectories avoiding collisions (Szlapczynski 2011;
Szlapczynski 2015), it is a centralized algorithm that
we believe become low performance if the number of
encountering ships increases.

On the other hand, by modeling ships as
autonomous agents, a series of distributed ship
collision avoidance algorithms are recently provided
(Kim, et.al. 2014; Kim et.al. 2015; Kim et.al. 2017). The
latest version of it, called DSSA, runs the distributed
stochastic search algorithm (Zhang, et.al. 2005) in
order to change courses of ships (while keeping their
individual current speeds).

3 DISTRIBUTED SCA

3.1 Framework

As shown in Figure 1, distributed ship collision
avoidance consists of two phases, which we call the

control phase and the search phase. We assume that all
ships iterate these two phases simultaneously. One
iteration of these phases is called one time step.

In the control phase, a ship, who does not reach
her goal, moves directly to the next position if she
finds no ship in her detection range. If she finds some
other ships in her detection range, they will shift into
the search phase.

In the search phase, several ships try to avoid
collisions by running a distributed algorithm. If all
ships find collision-free courses by that algorithm, or
if computation time exceeds a certain time limit, they
update the next positions based on the courses they
found, and will move there for the next time step.

Figure 1. Framework of Distributed SCA

3.2 Cost and Improvement

In a distributed algorithm, we assume that ships can
exchange intentions using a communication system
such as AIS. An intention of a ship in this context is
the course which will be selected by the ship at the
time point after one time step.

When receiving current positions, courses
(headings), speeds, and intentions of neighboring
ships, one ship (called self hereafter) will compute the
costs of current and every possible courses by using
the following formula:

     , ,self self self
j Neighbors

Cost crs CR crs j EF crs


 
where

    if will collide with ,
,,

0 ,
self

TimeWindow self j
TCPA crs jCR crs j

otherwise


 



   
180

dest
self

crs
EF crs

 
 


  ,

 45 , 40 , , 5 ,0 , 5 , , 40 , 45 , destcrs Dom crs               

119

The variable crs indicates a relative angle to
current ship heading, which can take not only any
angle from 45 degree (the leftmost) to 45
degree (the rightmost) at a step of 5 degree, but also a
special relative angle destcrs that leads directly to the
destination of self only if it is within 45 degree and

45 degree. Note that 0 degree of crs indicates a
current heading of self.

 ,selfCR crs j computes a “collision risk” against
ship j when self changes her heading to crs.
TimeWindow is a constant length of time step for each
ship to predict future positions based on the
intentions of herself and her neighboring ships.

 ,TCPA crs j is the time to closest point of approach
against ship j when self changes her heading to crs and
ship j assumes to follow the received tentative
intention. Intuitively, the closer the time when self will
collide with ship j, the more the value of

 ,selfCR crs j becomes.

On the other hand,  selfEF crs computes
“inefficiency” when self changes her heading to crs.

dest is an absolute angle for the destination of self
and  crs is an absolute angle for crs. Intuitively,
the closer the heading taken by self is to her
destination course, the smaller the value of

 selfEF crs becomes. Note that a balance on the
impact to the cost between collision risk and
inefficiency can be controlled by a value of weighting
factor  .

In a distributed algorithm, the ships try to decide
their own intentions (the course which will be
selected at next time step) while exchanging their
tentative intentions. As her tentative intention, self
will try to select the course that achieves the
maximum cost reduction all the time. We thus define
the following variables:

    max 0self self selfcrs Dom
improvement Cost Cost crs


 

    argmax 0self self self
crs Dom

intention Cost Cost crs


 

 0selfCost is the cost of a current heading of self
and  selfCost crs is the cost when self changes her
heading to crs. Therefore, selfimprovement is
nothing other than the maximum cost reduction while

selfintention is the course that achieves that
maximum cost reduction. We need to emphasize that
the values of these variables depend on tentative
intentions of neighboring ships. This is because a
value of  ,TCPA crs j in computing collision risk
against ship j may vary depending on the tentative
intention of ship j.

By allowing the ships to exchange these tentative
intentions through a communication system such as
AIS, we have been considering that we can construct
various concrete distributed ship collision avoidance
algorithms. Among those presented so far, its latest
version is called Distributed Stochastic Search
Algorithm (DSSA).

3.3 DSSA

DSSA is one instantiation of distributed stochastic
search (Zhang, et.al. 2005) in the context of ship

collision avoidance. The technique of distributed
stochastic search was originally proposed to solve the
Distributed Constraint Optimization Problem
(DCOP), which is a general model for distributed
problem solving. This technique is quite simple but
powerful, and has been applied to solve various
distributed problem, such as the scheduling problem
on distributed sensor networks (Zhang, et.al. 2005).

Figure 2. Flowchart of DSSA from a global viewpoint

Following the scheme of distributed stochastic
search, we have built DSSA for ship collision
avoidance, whose flowchart from a "global" viewpoint
is shown in Figure 2. In DSSA , every ship (self) first
sets her current heading to her own intention. After
exchanging their intentions with neighboring ships,
self computes selfCost , selfimprovement , and

_ selfnew intention based on those exchanged
intentions. We should note here that selfintention is
not yet overwritten by _ selfnew intention just
computed now. self is satisfied with her current

selfintention if the maximum cost reduction
(selfimprovement) is equal to 0, and furthermore, the
system naturally reaches to a quiescence if all of the
ships are satisfied with their own intentions. On the
other hand, if any of the ships has a positive value for

selfimprovement , she will change her intention
probabilistically. More specifically, she will overwrite
her selfintention with _ selfnew intention with
probability p and will not do with probability
1 p . With those updated intentions, the ships
proceed to the next round of exchanging intentions.
They repeat this process until a quiescence has been
reached or a predetermined time limit has come.

120

Figure 3. Domain of intentions for DSSA and DSSA+.

4 NEW ALGORITHM: DSSA+

In order to realize more sophisticated way of avoiding
collisions, we extend the previous DSSA such that
it can handle situations where autonomous ships can
change both course and speed. We call this extended
algorithm DSSA . The overall framework of
DSSA is almost the same as DSSA , but a new
part is the definitions of intention and cost function.

An intention of a ship in DSSA is represented
by a pair of course (denoted by crs) and speed change
(denoted by spc), each of which will be selected by the
ship at the time point after one time step. The course
is the same as that of DSSA , but the speed change is
the speed change relative to the current speed, and
supposed to take a value from 8 knot to 8 knot
in a step of 2 knot. A domain of values that can be
selected by the ship in DSSA and DSSA as her
intention is conceptually illustrated in the left and
right of Figure 3, respectively. Each dot represents a
possible value that a ship can take as her intention.
Note that the number of possible intentions for
DSSA is at most 20, but that for DSSA may
increase up to 180.

The cost of any possible pair  ,crs spc of course
and speed change can be computed by the following
formula:

 ,selfCost crs spc

    , , , ,self self
j Neighbors

CR crs spc j EF crs spc


 

where

 , , selfCR crs spc j

  if will collide with ,
, ,

0 ,

TimeWindow self j
TCPA crs spc j

otherwise


 



   
,

180
dest

self

crs
EF crs spc

 
 


 

 min max{ , , }
 ,

CurSPD spc MinSPD MaxSPD RefSPD
MaxSPD


 

 

     , 45 , 8 , , 45 , 8 ,crs spc Dom kt kt       

    45 , 8 , , 45 , 8 ,kt kt     

    , 8 , , , 8 .dest destcrs kt crs kt  

 , ,selfCR crs spc j computes a “collision risk”
against ship j when self changes her heading to crs and
her speed by spc.  , ,TCPA crs spc j is the time to
closest point of approach against ship j when self
changes her heading to crs and her speed by spc while
ship j assumes to follow the received tentative
intention (see Appendix). TimeWindow is the same as
that of DSSA . As mentioned earlier, intuitively, the
closer the time when self will collide with ship j, the
more the value of  , , selfCR crs spc j becomes.

On the other hand,  ,selfEF crs spc computes
“inefficiency” when self changes her heading to crs
and her speed by spc. Unlike DSSA , it consists of
two terms. The first term calculates inefficiency about
the course, which is actually the same as that of
DSSA . The second term, which is newly introduced
in DSSA , calculates inefficiency about the speed.
The value of this second term becomes smaller as the
speed of self after a given speed change spc, is closer to
the reference speed of self. The reference speed,
denoted as RefSPD, is the most desirable speed for
self, which may depend on ship types in general. Also,
MaxSPD and MinSPD are the maximum and
minimum speed of self, respectively, which may again
depend on ship types. These are introduced to ensure
that the current speed of self, denoted as CurSPD,
becomes not less than MinSPD and not more than
MaxSPD after speed change spc is applied.

The values of these first and second terms in
 ,selfEF crs spc are weighted by the parameters 

and  , respectively. When  is larger than  , self
gets more likely to select relatively the speed change
rather than the course change in order to avoid
collisions. Conversely, when  is smaller than  ,
self gets more likely to select the course change
relatively rather than the speed change to avoid
collisions.

The flowchart of DSSA is the same as that of
DSSA illustrated in Figure 2, except that

selfintention is instantiated with a pair of course and
speed change not with just course.

5 EXPERIMENT

We compare the performance of DSSA and
DSSA by simulation in a 800  800 two-
dimensional space. Throughout these experiments,
we set the probability p in Figure 2 to be 0.8 both in
DSSA and DSSA . The radius of detection range of
each ship was set to 500, in which the ship is assumed
to be able to exchange intentions with other ships.
TimeWindow, a constant length of time step for each
ship to predict future positions, was fixed to 20. In
this experiment, the following three versions of
DSSA were tried.

121

Table 1. Experimental results for two-ship instance ___
 DSSA s cDSSA

 s cDSSA


s cDSSA


Total length 1150.0 985.5 1154.0 1154.0
of paths
Travel time 23.0 22.7 25.0 25.0
of each ship
Detour rate 1.17 1.00 1.17 1.17
of each ship
Success rate 20/20 20/20 20/20 20/20 ___

Figure 4. Trajectories for two ships pushing each other


s cDSSA : the version where, for all of the ships, the value

of  in  ,selfEF crs spc was set to be 10 times higher
than the value of  , by doing such, the speed change is
more likely to be selected than the course change.


s cDSSA : the version where, for all of the ships, the value

of  in  ,selfEF crs spc was set to be 10 times lower
than the value of  , by doing such, the course change is
more likely to be selected than the speed change.


s cDSSA : the version where, for all of the ship, the value

of  in  ,selfEF crs spc was set to be the same as the
value of  .

5.1 Two Ships Pushing Each Other

In order to provide an example clearly showing the
merit to consider speed change to avoid collisions, we
made a simple experiment on two ships going in
parallel and heading towards the destinations on the
other side to each other. Typical trajectories of these
two ships generated by DSSA and s cDSSA

 are
shown in Figure 4. Note that in s cDSSA

 the
reference speeds of two ships were the same as 25kt
and their speeds are changeable, but in DSSA the
speeds of two ships were exactly the same as 25kt at
all times.

Obviously, s cDSSA
 generates a more natural

trajectory. In s cDSSA
 , one of the ships

autonomously slows down her speed and lets the
other ship go first before heading to her own
destination. On the other hand, in DSSA , as a result
of both ships attempting to avoid collisions by only
changing the course without slowing down their

speeds, one ship is pushed out in the direction
opposite to her own destination, resulting in a large
detour (see the trajectory of Ship 2 in the left-bottom
of Figure 4).

Since DSSA and DSSA are stochastic
algorithms, we may get totally different results even
when we try each of them on the same problem
instance. Table 1 shows some statistical data on the
average performance of these DSSA and DSSA
over 20 trials on this two-ship example. The detour
rate is computed for each ship by dividing the
distance actually traveled from her initial position to
goal position by the shortest distance therebetween.
As can be seen from Table 1, in s cDSSA

 , each ship
never detours, and both total length of paths and
travel time of each ship are minimized. However, for
DSSA with different weight values, it is somewhat
worse than the conventional DSSA in terms of both
total length of paths and travel time of each ship.

5.2 16 Ships Crossing Each Other

In the next experiment, we assume that 16 ships, each
with a reference speed of 25kt, are approaching each
other from upper, lower, left and right sides and
orthogonally try to cross each other towards their
individual destinations. This situation is depicted in
the top of Figure 5. Typical trajectories generated
from some successful runs by DSSA and

s cDSSA
 are shown in the left- and right-bottom of

Figure 5, respectively. As can be seen from these
figures, with DSSA , some ships may detour too
much and go outside the area surrounded by 16 ships
to avoid collision, but such a thing never happens
with s cDSSA

 .

We have conducted 50 random trials for each of
DSSA and DSSA on this problem instance.
Table 2 shows the average of the total length of paths
by all ships, the average of travel time of each ship,
the average detour rate of each ship, and the success
rate out of 50 trials. The average value is calculated
only on the results of successful trials. Generally, with
DSSA , the ships can reach their respective
destinations without collisions by properly adjusting
the speed while taking more time on their shorter
paths.

Table 2. Experimental results for 16-ship instance ___
 DSSA s cDSSA

 s cDSSA
 s cDSSA

 ___
Total length 9833.6 8693.4 9816.9 9096.4
of paths
Travel time 24.6 33.2 26.5 25.3
of each ship
Detour rate 1.14 1.01 1.15 1.06
of each ship
Success rate 32/50 50/50 47/50 49/50 ___

Table 3. Experimental results for 3-ship instance ___
 DSSA s cDSSA

 s cDSSA
 s cDSSA

 ___
Total length 1709.0 1702.0 1713.5 1705.9
of paths
Travel time 49.6 59.3 51.4 49.5
of each ship
Detour rate 1.02 1.01 1.02 1.01
of each ship
Success rate 20/20 1/20 20/20 17/20 ___

122

Figure 5. Trajectories for 16 ships crossing each other

Figure 6. Trajectories for three ships overtaking or being
overtaken

5.3 Three Ships Overtaking or Being Overtaken

So far, when DSSA is applied to some specific
scenarios, it has been observed that it seems to be
more effective to put more emphasis on speed change
rather than course change. However, that is certainly
a misleading discussion. Indeed, there is also a
counterexample in which course change is more
effective than speed change.

Suppose that three ships with different reference
speeds (5, 10, and 25kt) are lined up on the straight
line in ascending order of reference speed and each
goes in the same direction towards her destination
that is on the extension of that straight line. Also
assume that the destination of the slowest ship at the

head is the closest and conversely the destination of
the last fastest ship is the furthest. This situation is
illustrated in the top of Figure 6. Typical trajectories
generated by DSSA and s cDSSA

 are shown in
the left- and right-bottom of Figure 6, respectively.
Note that the right-bottom of Figure 6 is not the
trajectory of s cDSSA

 , but the trajectory of
s cDSSA
 that is more likely to change the course

than the speed. As a matter of fact, using s cDSSA


that is more likely to change the speed than the course
will cause collisions in most of the trials on this
example. The reason is quite simple. It is impossible
to avoid collisions with speed changes alone on this
example in the first place.

We have conducted 20 random trials for each of
DSSA and DSSA on this problem instance to
confirm this fact. Table 3 shows their results.
Certainly the performance of s cDSSA

 on this
example is clearly deteriorating. On the other hand, I
would like to point out the performance of s cDSSA


is still comparable to that of conventional DSSA .
This fact indicates that, in applying DSSA , which
of the course change or the speed change should be
weighed may greatly depends on the situation. To
overcome this issue technically, we need some new
principle to dynamically adjust the values of  and
 that appear in the "inefficiency" term

 ,selfEF crs spc of our cost function. We consider
that it would belong to our future work.

As a final note regarding our experiments, in (Kim,
et.al. 2017), experimental results with actual data
obtained from AIS have been reported, but in this
paper we have not dared to do such an experiment.
This is because real data obtained from AIS is
generally rather easy for both DSSA and DSSA ,
so it will not be a very interesting comparison.

6 CONCLUSION

Automatic ship collision avoidance is one of the key
technologies in the automation of ship operation
which has received lots of attention in recent years.
Although several computational methodologies for
realizing automatic ship collision avoidance have
been proposed, most of them deal with one-on-one or
one-to-many situations. We consider that these
methodologies will face a difficulty in so-called many-
to-many situations, where all of the ships work with
that methodology. Kim and colleague has recently
proposed a series of distributed ship collision
avoidance algorithms, in which a group of ships are
modeled by a multi-agent system where autonomous
agents exchange their intentions in advance to decide
and perform their next actions. In these algorithm, it
is assumed that ships would only change the course
while keeping the speed. In this paper, in
consideration of recent progress of vessel
maneuvering technology and the necessity to more
effectively avoid collision, we have presented
DSSA in which ships can change both course and
speed.

As a result of the experiment, the merit of
introducing not only the course change but also the
speed change as an option of possible actions was
demonstrated. On the other hand, however, there was

123

no single answer as to whether to set priority on the
course change or the speed change to effectively
avoid the collision, it turned out to depend on the
situation. As our future work, we are considering to
design a function that, when a situation around some
ship is given as input, is capable of returning
appropriate weighting over the options of the course
change and the speed change.

REFERENCES

Hu, Q., Yang. C., Chen. H. & Xiao, B. 2008. Planned Route
Based Negotiation for Collision Avoidance between
Vessels. TransNav, the International Journal on Marine
Navigation and Safety of Sea Transportation 2(4): 363-
368.

Kim, D., Hirayama, K., & Park, G. 2014. Collision
Avoidance in Multiple-ship Situations by Distributed
Local Search. Journal of Advanced Computational
Intelligence and Intelligent Informatics 18(5): 839-848.

Kim, D., Hirayama, K., & Okimoto, T. 2015. Ship Collision
Avoidance by Distributed Tabu Search. TransNav, the
International Journal on Marine Navigation and Safety
of Sea Transportation 9(1): 23-29.

Kim, D., Hirayama, K., & Okimoto, T. 2017. Distributed
Stochastic Search Algorithm for Multi-ship Encounter
Situations. The Journal of Navigation 70(4): 699-718.

Lamb, W.G.P. & Hunt, J.M. 1995. Multiple Crossing
Encounters. The Journal of Navigation 48(1): 105-113.

Lamb, W.G.P. & Hunt, J.M. 2000. Multiple Encounter
Avoidance Manoeuvres. The Journal of Navigation,
53(1): 181-186.

Lazarowska, A. 2015. Ship’s Trajectory Planning for
Collision Avoidance at Sea Based on Ant Colony
Optimisation. The Journal of Navigation 68(2): 291-307.

Lee, S., Kwon, K. & Joh, J. 2004. A Fuzzy Logic for
Autonomous Navigation of Marine Vehicles Satisfying
COLREG Guidelines. International Journal of Control,
Automation and Systems, 2(2): 171-181.

Szlapczynski, R. 2011. Evolutionary Sets of Safe Ship
Trajectories: A New Approach to Collision Avoidance.
The Journal of Navigation 64(1): 169-181.

Szlapczynski, R. 2015. Evolutionary Planning of Safe Ship
Tracks in Restricted Visibility. The Journal of Navigation
68(1): 39-51.

Tsou, M. & Hsueh, C. 2010. The Study of Ship Collision
Avoidance Route Planning by Ant Colony Algorithm.
Journal of Marine Science and Technology 18(5): 746-
756.

Tsou, M., Kao, S. & Su, C. 2010. Decision Support from
Genetic Algorithms for Ship Collision Avoidance Route
Planning and Alerts. The Journal of Navigation 63(1):
167-182.

Zhang, W., Wand G., Xing, Z. & Wittenburg, L. 2005.
Distributed Stochastic Search and Distributed Breakout:
Properties, Comparison and Applications to Constraint
Optimization Problem in Sensor Networks. Artificial
Intelligence 161(1–2): 55–87.

APPENDIX

We show the formula to compute TCPA against ship
j , from which self already received her intention,

when self selects its own course change crs and
speed change spc . Let the current position of self be
 0 0, self selfx y and let the position after advancing by
TimeWindow with crs and spc be  , self self

tw twx y .
Also, let the current position of ship j be  0 0, j jx y
and let the position of ship j after advancing by
TimeWindow with the recieved intention be
 , j j

tw twx y . In addition, we introduce the following
four new variables that can calculate their values from
the above coordinates:

1 0 0 ,self jX x x     2 0 0 ,self self j j
tw twX x x x x   

1 0 0 ,self jY y y     2 0 0 .self self j j
tw twY y y y y   

A set of rules to compute TCPA between self and
ship j is as follows.

If 2 2
2 2 0X Y  and 2 2

2 2 1 2 1 2 0X Y X X YY   

then  , ,TCPA crs spc j TimeWindow .

If 2 2
2 2 0X Y  and 1 2 1 2 0X X YY  then

 , , 0TCPA crs spc j  .

If 2 2
2 2 0X Y  and 1 2 1 2 0X X YY  and

2 2
2 2 1 2 1 2 0X Y X X YY    then

  1 2 1 2
2 2
2 2

, , X X YYTCPA crs spc j TimeWindow
X Y

  


.

If 2 2
2 2 0X Y  and 1 2 1 2 0X X YY  then

 , , 0TCPA crs spc j  .

If 2 2
2 2 0X Y  and 1 2 1 2 0X X YY  then

 , ,TCPA crs spc j TimeWindow .

In order to compute DCPA, distance at the closest
point of approach, between self and ship j , simply
calculate it by substituting  , ,TCPA crs spc j

TimeWindow
 for variable

t in the following formula:

     2 2 2 2 2
1 1 1 2 1 2 2 22DCPA t X Y X X YY t X Y t      .

When the value of this DCPA is sufficiently small,
we consider that self and ship j will collide within
TimeWindow.

