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1 INTRODUCTION 

According to statistics of ship accidents released by 
the Japan Transport Safety Board of the Ministry of 
Land, Infrastructure, Transport and Tourism, there 
are more than 200 ship collision accidents each year in 
Japanese waters. Since human, economic and 
environmental damage caused by a ship collision 
accident will be enormous, several legal or technical 
measures have been taken at present. 

One measure is the COLREG rules, which are 
international operation rules to prevent ship collisions 
enacted in 1972 and partial revision has continued 
thereafter. However, since these rules basically set 
action guidelines in the so-called one-to-one situation 
where one ship faces another ship, they do not work 
well in a narrow area nearby a large port, where 
many ships are likely to get congested. 

As another measure to prevent collisions, vessel 
traffic service (VTS) centers have been established on 
the coast of narrow and congested sea area, who 
provide each ship with instructions on the safe and 
efficient movement. However, in order to deal with 
dangerous and emergent situations, quick and proper 
instructions must be made, which is very challenging 
even for experienced marine traffic controllers. 
Furthermore, the cost of maintaining VTS centers is 
tremendously high. 

In order to support decision making by ship 
officers, communication systems called automatic 
radar plotting aid (ARPA) and automatic 
identification system (AIS) are already working on 
board. ARPA is the system to plot the positions of 
neighboring ships, which are obtained through radar, 
on screen, while AIS is the system that enables ships 
to exchange various information such as id, types, 
positions, speeds, destinations, with their neighboring 
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ships. For ships that meet certain criteria, installation 
of AIS is internationally obligatory. 

Kim and others have proposed the Distributed 
Stochastic Search Algorithm ( DSSA ) with the aim of 
realizing complete automatic ship collision avoidance 
(Kim et.al. 2017). In DSSA , ships having 
communication function such as AIS exchange their 
intentions (future plans of actions) of each other, and 
automatically decide their courses to avoid collision 
without relying on any central control like a VTS 
center. 

Since there is no brake on the ship, the speed 
cannot be changed rapidly in principle. Therefore, in 
DSSA , it was assumed that the ship would only 
change the course while keeping the speed to avoid 
collision. However, in consideration of the progress of 
vessel maneuvering technology by using controllable 
pitch propellers and the necessity to more effectively 
avoid collision, we extend DSSA  in this paper so 
that ships can change both course and speed. 

The remaining part of this paper is structured as 
follows. Section 2 mentions some related work on 
computational approaches to ship collision avoidance. 
Section 3 gives our general framework on distributed 
ship collision avoidance and one of its latest 
algorithms, Distributed Stochastic Search Algorithm 
( DSSA ). Section 4 presents DSSA+, as a 
generalization of DSSA , and followed by 
experimental evaluation showing its effectiveness in 
Section 5. Finally, Section 6 concludes this work. 

2 RELATED WORK 

Several computational methodologies for realizing 
automatic ship collision avoidance have been 
proposed. Most of them deal with one-on-one or one-
to-many situations (Lamb and Hunt 1995; Lamb and 
Hunt 2000; Lee et.al. 2004; Hu et al. 2008; Tsou & 
Hsueh 2010; Tsou, et.al. 2010; Lazarowska 2015), and 
very few studies have explicitly dealt with many-to-
many situations, where they simultaneously control 
multiple ships that encountered with each other. 
Although notable exceptions are the work on 
evolutionary algorithm for computing multi-ship 
trajectories avoiding collisions (Szlapczynski 2011; 
Szlapczynski 2015), it is a centralized algorithm that 
we believe become low performance if the number of 
encountering ships increases. 

On the other hand, by modeling ships as 
autonomous agents, a series of distributed ship 
collision avoidance algorithms are recently provided 
(Kim, et.al. 2014; Kim et.al. 2015; Kim et.al. 2017). The 
latest version of it, called DSSA, runs the distributed 
stochastic search algorithm (Zhang, et.al. 2005) in 
order to change courses of ships (while keeping their 
individual current speeds). 

3 DISTRIBUTED SCA 

3.1 Framework 

As shown in Figure 1, distributed ship collision 
avoidance consists of two phases, which we call the 

control phase and the search phase. We assume that all 
ships iterate these two phases simultaneously. One 
iteration of these phases is called one time step. 

In the control phase, a ship, who does not reach 
her goal, moves directly to the next position if she 
finds no ship in her detection range. If she finds some 
other ships in her detection range, they will shift into 
the search phase. 

In the search phase, several ships try to avoid 
collisions by running a distributed algorithm. If all 
ships find collision-free courses by that algorithm, or 
if computation time exceeds a certain time limit, they 
update the next positions based on the courses they 
found, and will move there for the next time step. 

 
Figure 1. Framework of Distributed SCA 

3.2 Cost and Improvement 

In a distributed algorithm, we assume that ships can 
exchange intentions using a communication system 
such as AIS. An intention of a ship in this context is 
the course which will be selected by the ship at the 
time point after one time step.  

When receiving current positions, courses 
(headings), speeds, and intentions of neighboring 
ships, one ship (called self hereafter) will compute the 
costs of current and every possible courses by using 
the following formula: 
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The variable crs indicates a relative angle to 
current ship heading, which can take not only any 
angle from 45  degree (the leftmost) to 45  
degree (the rightmost) at a step of 5 degree, but also a 
special relative angle destcrs  that leads directly to the 
destination of self only if it is within 45  degree and 

45  degree. Note that 0 degree of crs indicates a 
current heading of self. 

 ,selfCR crs j  computes a “collision risk” against 
ship j when self changes her heading to crs. 
TimeWindow is a constant length of time step for each 
ship to predict future positions based on the 
intentions of herself and her neighboring ships. 

 ,TCPA crs j  is the time to closest point of approach 
against ship j when self changes her heading to crs and 
ship j assumes to follow the received tentative 
intention. Intuitively, the closer the time when self will 
collide with ship j, the more the value of 

 ,selfCR crs j  becomes. 

On the other hand,  selfEF crs  computes 
“inefficiency” when self changes her heading to crs. 

dest  is an absolute angle for the destination of self 
and  crs  is an absolute angle for crs. Intuitively, 
the closer the heading taken by self is to her 
destination course, the smaller the value of 

 selfEF crs  becomes. Note that a balance on the 
impact to the cost between collision risk and 
inefficiency can be controlled by a value of weighting 
factor  . 

In a distributed algorithm, the ships try to decide 
their own intentions (the course which will be 
selected at next time step) while exchanging their 
tentative intentions. As her tentative intention, self 
will try to select the course that achieves the 
maximum cost reduction all the time. We thus define 
the following variables: 

    max 0self self selfcrs Dom
improvement Cost Cost crs


 

    argmax 0self self self
crs Dom

intention Cost Cost crs


   

 0selfCost  is the cost of a current heading of self 
and  selfCost crs  is the cost when self changes her 
heading to crs. Therefore, selfimprovement  is 
nothing other than the maximum cost reduction while 

selfintention  is the course that achieves that 
maximum cost reduction. We need to emphasize that 
the values of these variables depend on tentative 
intentions of neighboring ships. This is because a 
value of  ,TCPA crs j  in computing collision risk 
against ship j may vary depending on the tentative 
intention of ship j. 

By allowing the ships to exchange these tentative 
intentions through a communication system such as 
AIS, we have been considering that we can construct 
various concrete distributed ship collision avoidance 
algorithms. Among those presented so far, its latest 
version is called Distributed Stochastic Search 
Algorithm ( DSSA ). 

3.3 DSSA 

DSSA  is one instantiation of distributed stochastic 
search (Zhang, et.al. 2005) in the context of ship 

collision avoidance. The technique of distributed 
stochastic search was originally proposed to solve the 
Distributed Constraint Optimization Problem 
(DCOP), which is a general model for distributed 
problem solving. This technique is quite simple but 
powerful, and has been applied to solve various 
distributed problem, such as the scheduling problem 
on distributed sensor networks (Zhang, et.al. 2005). 

 
Figure 2. Flowchart of DSSA from a global viewpoint 

Following the scheme of distributed stochastic 
search, we have built DSSA  for ship collision 
avoidance, whose flowchart from a "global" viewpoint 
is shown in Figure 2. In DSSA , every ship (self) first 
sets her current heading to her own intention. After 
exchanging their intentions with neighboring ships, 
self computes selfCost , selfimprovement , and 

_ selfnew intention  based on those exchanged 
intentions. We should note here that selfintention  is 
not yet overwritten by _ selfnew intention  just 
computed now. self is satisfied with her current 

selfintention  if the maximum cost reduction 
( selfimprovement ) is equal to 0, and furthermore, the 
system naturally reaches to a quiescence if all of the 
ships are satisfied with their own intentions. On the 
other hand, if any of the ships has a positive value for 

selfimprovement , she will change her intention 
probabilistically. More specifically, she will overwrite 
her selfintention  with _ selfnew intention  with 
probability p  and will not do with probability 
1 p . With those updated intentions, the ships 
proceed to the next round of exchanging intentions. 
They repeat this process until a quiescence has been 
reached or a predetermined time limit has come. 
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Figure 3. Domain of intentions for DSSA and DSSA+. 

4 NEW ALGORITHM: DSSA+  

In order to realize more sophisticated way of avoiding 
collisions, we extend the previous DSSA  such that 
it can handle situations where autonomous ships can 
change both course and speed. We call this extended 
algorithm DSSA . The overall framework of 
DSSA  is almost the same as DSSA , but a new 
part is the definitions of intention and cost function. 

An intention of a ship in DSSA  is represented 
by a pair of course (denoted by crs) and speed change 
(denoted by spc), each of which will be selected by the 
ship at the time point after one time step. The course 
is the same as that of DSSA , but the speed change is 
the speed change relative to the current speed, and 
supposed to take a value from 8  knot to 8  knot 
in a step of 2 knot. A domain of values that can be 
selected by the ship in DSSA  and DSSA  as her 
intention is conceptually illustrated in the left and 
right of Figure 3, respectively. Each dot represents a 
possible value that a ship can take as her intention. 
Note that the number of possible intentions for 
DSSA  is at most 20, but that for DSSA  may 
increase up to 180. 

The cost of any possible pair  ,crs spc  of course 
and speed change can be computed by the following 
formula: 

 ,selfCost crs spc
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j Neighbors
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 , ,selfCR crs spc j  computes a “collision risk” 
against ship j when self changes her heading to crs and 
her speed by spc.  , ,TCPA crs spc j  is the time to 
closest point of approach against ship j when self 
changes her heading to crs and her speed by spc while 
ship j assumes to follow the received tentative 
intention (see Appendix). TimeWindow is the same as 
that of DSSA . As mentioned earlier, intuitively, the 
closer the time when self will collide with ship j, the 
more the value of  , , selfCR crs spc j  becomes. 

On the other hand,  ,selfEF crs spc  computes 
“inefficiency” when self changes her heading to crs 
and her speed by spc. Unlike DSSA , it consists of 
two terms. The first term calculates inefficiency about 
the course, which is actually the same as that of 
DSSA . The second term, which is newly introduced 
in DSSA , calculates inefficiency about the speed. 
The value of this second term becomes smaller as the 
speed of self after a given speed change spc, is closer to 
the reference speed of self. The reference speed, 
denoted as RefSPD, is the most desirable speed for 
self, which may depend on ship types in general. Also, 
MaxSPD and MinSPD are the maximum and 
minimum speed of self, respectively, which may again 
depend on ship types. These are introduced to ensure 
that the current speed of self, denoted as CurSPD, 
becomes not less than MinSPD and not more than 
MaxSPD after speed change spc is applied. 

The values of these first and second terms in 
 ,selfEF crs spc  are weighted by the parameters   

and  , respectively. When   is larger than  , self 
gets more likely to select relatively the speed change 
rather than the course change in order to avoid 
collisions. Conversely, when   is smaller than  , 
self gets more likely to select the course change 
relatively rather than the speed change to avoid 
collisions. 

The flowchart of DSSA  is the same as that of 
DSSA  illustrated in Figure 2, except that 

selfintention  is instantiated with a pair of course and 
speed change not with just course. 

5 EXPERIMENT 

We compare the performance of DSSA  and 
DSSA  by simulation in a 800  800 two-
dimensional space. Throughout these experiments, 
we set the probability p  in Figure 2 to be 0.8 both in 
DSSA  and DSSA . The radius of detection range of 
each ship was set to 500, in which the ship is assumed 
to be able to exchange intentions with other ships. 
TimeWindow, a constant length of time step for each 
ship to predict future positions, was fixed to 20. In 
this experiment, the following three versions of 
DSSA  were tried. 
 
 



121 

Table 1. Experimental results for two-ship instance _______________________________________________ 
     DSSA  s cDSSA

   s cDSSA
   

s cDSSA


 _______________________________________________ 
Total length 1150.0 985.5    1154.0   1154.0 
of paths  
Travel time 23.0  22.7    25.0    25.0 
of each ship 
Detour rate 1.17  1.00    1.17    1.17 
of each ship 
Success rate 20/20  20/20    20/20    20/20 _______________________________________________ 
 

 
Figure 4. Trajectories for two ships pushing each other 


s cDSSA : the version where, for all of the ships, the value 

of   in  ,selfEF crs spc  was set to be 10 times higher 
than the value of  , by doing such, the speed change is 
more likely to be selected than the course change. 


s cDSSA : the version where, for all of the ships, the value 

of   in  ,selfEF crs spc  was set to be 10 times lower 
than the value of  , by doing such, the course change is 
more likely to be selected than the speed change. 


s cDSSA : the version where, for all of the ship, the value 

of   in  ,selfEF crs spc  was set to be the same as the 
value of  . 

5.1 Two Ships Pushing Each Other 

In order to provide an example clearly showing the 
merit to consider speed change to avoid collisions, we 
made a simple experiment on two ships going in 
parallel and heading towards the destinations on the 
other side to each other. Typical trajectories of these 
two ships generated by DSSA  and s cDSSA

  are 
shown in Figure 4. Note that in s cDSSA

  the 
reference speeds of two ships were the same as 25kt 
and their speeds are changeable, but in DSSA  the 
speeds of two ships were exactly the same as 25kt at 
all times. 

Obviously, s cDSSA
  generates a more natural 

trajectory. In s cDSSA
 , one of the ships 

autonomously slows down her speed and lets the 
other ship go first before heading to her own 
destination. On the other hand, in DSSA , as a result 
of both ships attempting to avoid collisions by only 
changing the course without slowing down their 

speeds, one ship is pushed out in the direction 
opposite to her own destination, resulting in a large 
detour (see the trajectory of Ship 2 in the left-bottom 
of Figure 4). 

Since DSSA  and DSSA  are stochastic 
algorithms, we may get totally different results even 
when we try each of them on the same problem 
instance. Table 1 shows some statistical data on the 
average performance of these DSSA  and DSSA  
over 20 trials on this two-ship example. The detour 
rate is computed for each ship by dividing the 
distance actually traveled from her initial position to 
goal position by the shortest distance therebetween. 
As can be seen from Table 1, in s cDSSA

 , each ship 
never detours, and both total length of paths and 
travel time of each ship are minimized. However, for 
DSSA  with different weight values, it is somewhat 
worse than the conventional DSSA  in terms of both 
total length of paths and travel time of each ship. 

5.2 16 Ships Crossing Each Other 

In the next experiment, we assume that 16 ships, each 
with a reference speed of 25kt, are approaching each 
other from upper, lower, left and right sides and 
orthogonally try to cross each other towards their 
individual destinations. This situation is depicted in 
the top of Figure 5. Typical trajectories generated 
from some successful runs by DSSA  and 

s cDSSA
  are shown in the left- and right-bottom of 

Figure 5, respectively. As can be seen from these 
figures, with DSSA , some ships may detour too 
much and go outside the area surrounded by 16 ships 
to avoid collision, but such a thing never happens 
with s cDSSA

 . 

We have conducted 50 random trials for each of 
DSSA  and DSSA  on this problem instance. 
Table 2 shows the average of the total length of paths 
by all ships, the average of travel time of each ship, 
the average detour rate of each ship, and the success 
rate out of 50 trials. The average value is calculated 
only on the results of successful trials. Generally, with 
DSSA , the ships can reach their respective 
destinations without collisions by properly adjusting 
the speed while taking more time on their shorter 
paths. 

Table 2. Experimental results for 16-ship instance _______________________________________________ 
     DSSA  s cDSSA

  s cDSSA
   s cDSSA

  _______________________________________________ 
Total length 9833.6 8693.4   9816.9   9096.4 
of paths 
Travel time 24.6  33.2    26.5    25.3 
of each ship 
Detour rate 1.14  1.01    1.15    1.06 
of each ship 
Success rate 32/50  50/50    47/50    49/50 _______________________________________________ 

Table 3. Experimental results for 3-ship instance _______________________________________________ 
     DSSA  s cDSSA

  s cDSSA
   s cDSSA

  _______________________________________________ 
Total length 1709.0 1702.0   1713.5   1705.9 
of paths 
Travel time 49.6  59.3    51.4    49.5 
of each ship 
Detour rate 1.02  1.01    1.02    1.01 
of each ship 
Success rate 20/20  1/20    20/20    17/20 _______________________________________________ 
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Figure 5. Trajectories for 16 ships crossing each other 

 
Figure 6. Trajectories for three ships overtaking or being 
overtaken 

5.3 Three Ships Overtaking or Being Overtaken 

So far, when DSSA  is applied to some specific 
scenarios, it has been observed that it seems to be 
more effective to put more emphasis on speed change 
rather than course change. However, that is certainly 
a misleading discussion. Indeed, there is also a 
counterexample in which course change is more 
effective than speed change. 

Suppose that three ships with different reference 
speeds (5, 10, and 25kt) are lined up on the straight 
line in ascending order of reference speed and each 
goes in the same direction towards her destination 
that is on the extension of that straight line. Also 
assume that the destination of the slowest ship at the 

head is the closest and conversely the destination of 
the last fastest ship is the furthest. This situation is 
illustrated in the top of Figure 6. Typical trajectories 
generated by DSSA  and s cDSSA

  are shown in 
the left- and right-bottom of Figure 6, respectively. 
Note that the right-bottom of Figure 6 is not the 
trajectory of s cDSSA

 , but the trajectory of 
s cDSSA
  that is more likely to change the course 

than the speed. As a matter of fact, using s cDSSA
  

that is more likely to change the speed than the course 
will cause collisions in most of the trials on this 
example. The reason is quite simple. It is impossible 
to avoid collisions with speed changes alone on this 
example in the first place. 

We have conducted 20 random trials for each of 
DSSA  and DSSA  on this problem instance to 
confirm this fact. Table 3 shows their results. 
Certainly the performance of s cDSSA

  on this 
example is clearly deteriorating. On the other hand, I 
would like to point out the performance of s cDSSA

  
is still comparable to that of conventional DSSA . 
This fact indicates that, in applying DSSA ,  which 
of the course change or the speed change should be 
weighed may greatly depends on the situation. To 
overcome this issue technically, we need some new 
principle to dynamically adjust the values of   and 
  that appear in the "inefficiency" term 

 ,selfEF crs spc  of our cost function. We consider 
that it would belong to our future work. 

As a final note regarding our experiments, in (Kim, 
et.al. 2017), experimental results with actual data 
obtained from AIS have been reported, but in this 
paper we have not dared to do such an experiment. 
This is because real data obtained from AIS is 
generally rather easy for both DSSA  and DSSA , 
so it will not be a very interesting comparison. 

6 CONCLUSION 

Automatic ship collision avoidance is one of the key 
technologies in the automation of ship operation 
which has received lots of attention in recent years. 
Although several computational methodologies for 
realizing automatic ship collision avoidance have 
been proposed, most of them deal with one-on-one or 
one-to-many situations. We consider that these 
methodologies will face a difficulty in so-called many-
to-many situations, where all of the ships work with 
that methodology. Kim and colleague has recently 
proposed a series of distributed ship collision 
avoidance algorithms, in which a group of ships are 
modeled by a multi-agent system where autonomous 
agents exchange their intentions in advance to decide 
and perform their next actions. In these algorithm, it 
is assumed that ships would only change the course 
while keeping the speed. In this paper, in 
consideration of recent progress of vessel 
maneuvering technology and the necessity to more 
effectively avoid collision, we have presented 
DSSA  in which ships can change both course and 
speed. 

As a result of the experiment, the merit of 
introducing not only the course change but also the 
speed change as an option of possible actions was 
demonstrated. On the other hand, however, there was 



123 

no single answer as to whether to set priority on the 
course change or the speed change to effectively 
avoid the collision, it turned out to depend on the 
situation. As our future work, we are considering to 
design a function that, when a situation around some 
ship is given as input, is capable of returning 
appropriate weighting over the options of the course 
change and the speed change. 
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APPENDIX 

We show the formula to compute TCPA against ship 
j , from which self already received her intention, 

when self selects its own course change crs  and 
speed change spc . Let the current position of self be 
 0 0,  self selfx y  and let the position after advancing by 
TimeWindow with crs  and spc  be  ,  self self

tw twx y . 
Also, let the current position of ship j  be  0 0,  j jx y  
and let the position of ship j  after advancing by 
TimeWindow with the recieved intention be 
 ,  j j

tw twx y . In addition, we introduce the following 
four new variables that can calculate their values from 
the above coordinates: 

1 0 0 ,self jX x x     2 0 0 ,self self j j
tw twX x x x x   

1 0 0 ,self jY y y     2 0 0 .self self j j
tw twY y y y y     

A set of rules to compute TCPA between self and 
ship j  is as follows. 

If 2 2
2 2 0X Y   and 2 2

2 2 1 2 1 2 0X Y X X YY     

then   , ,TCPA crs spc j TimeWindow . 

If 2 2
2 2 0X Y   and 1 2 1 2 0X X YY   then  

 , , 0TCPA crs spc j  . 

If 2 2
2 2 0X Y   and 1 2 1 2 0X X YY   and 

2 2
2 2 1 2 1 2 0X Y X X YY     then  

  1 2 1 2
2 2
2 2

, , X X YYTCPA crs spc j TimeWindow
X Y

  


. 

If 2 2
2 2 0X Y   and 1 2 1 2 0X X YY   then 

 , , 0TCPA crs spc j  . 

If 2 2
2 2 0X Y   and 1 2 1 2 0X X YY   then  

 , ,TCPA crs spc j TimeWindow . 

In order to compute DCPA, distance at the closest 
point of approach, between self and ship j , simply 
calculate it by substituting  , ,TCPA crs spc j

TimeWindow
 for  variable 

t  in the following formula:  

     2 2 2 2 2
1 1 1 2 1 2 2 22DCPA t X Y X X YY t X Y t      . 

When the value of this DCPA is sufficiently small, 
we consider that self and ship j  will collide within 
TimeWindow.


