PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

Performance evaluation of non-water absorption coefficient partitioning algorithms in optically complex coastal waters of Kochi and Goa, India

Identyfikatory
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
Absorption coefficient partitioning algorithms (APAs) were developed to partition the total absorption coefficient (a(λ)) or total non-water absorption coefficient (anw(λ)) into the absorption subcomponents, i.e., absorption due to phytoplankton aph(λ), colored dissolved organic matter (CDOM) aƍ(λ) and non-algal particulate matter ad(λ), λ is the wavelength. Absorption coefficients of CDOM and non-algal particulate matter are generally combined due to a similarity in exhibited spectral shape and represented as colored detrital matter (CDM) absorption coefficient, a(λ). This study focuses on the applicability of five APAs Schofield's, Lin's, Zhang's, Stacked Constraints Model (SCM) and Generalized Stacked Constraints Model (GSCM), in deriving the absorption subcomponents from anw(λ) in optically complex coastal waters of Kochi and Goa, India. The average spectral Mean Absolute Percentage Errors (MAPE) obtained for all models in the retrieval of aph(λ), ad(λ), aƍ(λ) and a(λ) lie in the ranges of 26-44%, 37-45%, 34-65% and 42-56%. Slopes of a(λ), aƍ(λ) and ad(λ) as indicated by S, Sƍ and Sd are derivable from GSCM, Schofield and Lin's models only. GSCM model exhibited good retrieval capability of Sd with MAPE values of 22% and a correlation coefficient of 0.74. In retrieval of Sƍ parameter, none of the models demonstrated satisfactory performance. Overall, the GSCM and Schofield's models demonstrated good performance in the retrieval of absorption subcomponents, aph(λ), a(λ), ad(λ) and Sd. Effect of applying baseline correction to ad(λ) on model performance is studied. Tuning with in situ data can further improve the absorption subcomponent and slope parameter retrieval capability of the models.
Czasopismo
Rocznik
Strony
420--437
Opis fizyczny
Bibliogr. 53 poz., rys., tab., wykr.
Twórcy
  • Centre of Studies in Resources Engineering, Indian Institute of Technology, Bombay, India
  • Centre of Studies in Resources Engineering, Indian Institute of Technology, Bombay, India
  • Centre of Studies in Resources Engineering, Indian Institute of Technology, Bombay, India
Bibliografia
  • [1] ac Meter Protocol Document, 2011. Rev. Q, Wet Labs.
  • [2] Boss, E., 2014. Software to compute the spectral slope of dissolved absorption (exponential fit). MISC Lab, Univ. Maine.
  • [3] Brewin, R. J. W., Sathyendranath, S., Müller, D., Brockmann, C., Deschamps, P. Y., Devred, E., Doerffer, R., Fomferra, N., Franz, B., Grant, M., Groom, S., Horseman, A., Hu, C., Krasemann, H., Lee, Z. P., Maritorena, S., Mélin, F., Peters, M., Platt, T., Regner, P., Smyth, T., Steinmetz, F., Swinton, J., Werdell, J., White, G. N., 2015. The Ocean Colour Climate Change Initiative: III. A round-robin comparison on in-water bio-optical algorithms. Remote Sens. Environ. 162, 271-294. https://doi.org/10.1016/j.rse.2013.09.016.
  • [4] Bricaud, A., Ciotti, A.M., Gentili, B., 2012. Spatial-temporal variations in phytoplankton size and colored detrital matter absorption at global and regional scales, as derived from twelve years of SeaWiFS data (1998-2009). Global Biogeochem. Cy. 26, 1-17. https://doi.org/10.1029/2010GB003952.
  • [5] Bricaud, A., Morel, A., Babin, M., Allali, K., Claustre, H., 1998. Variations of light absorption by suspended particles with chlorophyll a concentration in oceanic (case 1) waters: Analysis and implications for bio-optical models. J. Geophys. Res. 103, 31033-31044.
  • [6] Bricaud, A., Morel, A., Prieur, L., 1981. Absorption by dissolved organic matter of the sea (yellow substance) in the UV and visible domains. Limnol. Oceanogr. 26, 43-53. https://doi.org/10.4319/lo.1981.26.1.0043.
  • [7] Ciotti, A. M., Bricaud, A., 2006. Retrievals of a size parameter for phytoplankton and spectral light absorption by colored detrital matter from water-leaving radiances at SeaWiFS channels in a continental shelf region off Brazil. Limnol. Oceanogr. Methods 4, 237-253. https://doi.org/10.4319/lom.2006.4.237.
  • [8] Ciotti, M., Lewis, M. R., Cullen, J. J., 2002. Assessment of the relationships between dominant cell size in natural phytoplankton communities and the spectral shape of the absorption coefficient. Limnol. Oceanogr. 47, 404-417.
  • [9] Cleveland, J. S., Weidemann, A. D., 1993. Quantifying absorption by aquatic particles: A multiple scattering correction for glass-fiber filters. Limnol. Oceanogr. 38, 1321-1327. https://doi.org/10.4319/lo.1993.38.6.1321.
  • [10] Dana, D. R., Maffione, R. A., 2006. A New Hyperspectral Spherical-Cavity Absorption Meter. In: AGU Ocean Sciences Meeting, Honolulu, Hawaii, 1-13.
  • [11] Das, S., Das, I., Giri, S., Chanda, A., Maity, S., Lotliker, A. A., Kumar, T. S., Akhand, A., Hazra, S., 2017. Chromophoric dissolved organic matter (CDOM) variability over the continental shelf of the northern Bay of Bengal. Oceanologia 59 (3), 271-282. https://doi.org/10.1016/j.oceano.2017.03.002.
  • [12] Freeman, S., 2012. Calibration and data processing of acs device.
  • [13] Gallegos, C. L., Neale, P. J., 2002. Partitioning spectral absorption in case 2 waters: discrimination of dissolved and particulate components. Appl. Opt. 41, 4220-4233. https://doi.org/10.1364/ao.41.004220.
  • [14] Green, S. A., Blough, N. V., 1994. Optical absorption and fluorescence properties of chromophoric dissolved organic matter in natural waters. Limnol. Oceanogr. 39, 1903-1916. https://doi.org/10.4319/lo.1994.39.8.1903.
  • [15] Grunert, B. K., Mouw, C. B., Ciochetto, A. B., 2018. Characterizing CDOM Spectral Variability Across Diverse Regions and Spectral Ranges. Global Biogeochem. Cy. 32, 57-77. https://doi.org/10.1002/2017GB005756.
  • [16] Johnsen, G., Samset, O., Granskog, L., Sakshaug, E., 1994. In vivo absorption characteristics in 10 classes of bloom-forming phytoplankton — Taxonomic characteristics and responses to photoadaptation by means of discriminant and HPLC analysis. Mar. Ecol. Prog. Ser. 105, 149-158. https://doi.org/10.3354/meps105149.
  • [17] Joliff, J. K., Kindle, J. C., Shulman, I. G., Penta, B., Friedrichs, M. A. M., Helber, R., Arnone, R. A., 2009. Summary diagrams for coupled hydrodynamic-ecosystem model skill assessment. J. Marine Syst. 76, 64-82.
  • [18] Kishino, M., Takahashi, M., Okami, N., Ichimura, S., 1985. Estimation of the spectral absorption coefficients of phytoplankton in the sea. Bull. Mar. Sci. 37, 634-642.
  • [19] Kowalczuk, P., Kaczmarek, S., 1996. Analysis of temporal and spatial variability of yellow substance absorption in the southern baltic. Oceanologia 38 (1), 1-32.
  • [20] Kyewalyanga, M. N., Platt, T., Sathyendranath, S., 1998. Seasonal variations in physiological parameters of phytoplankton across the North Atlantic. J. Plankt. 20, 17-42.
  • [21] Lee, Z., Carder, K. L., Arnone, R. A., 2002. Deriving inherent optical properties from water color: a multiband quasi-analytical algorithm for optically deep waters. Appl. Opt. 41, 5755-5772. https://doi.org/10.1364/AO.41.005755.
  • [22] Lin, J., Cao, W., Wang, G., Hu, S., 2013. Approach for determining the contributions of phytoplankton, colored organic material, and nonalgal particles to the total spectral absorption in marine waters. Appl. Opt. 52, 4249-4257. https://doi.org/10.1364/AO.52.004249.
  • [23] Loiselle, S. A., Bracchini, L., Dattilo, A. M., Ricci, M., Tognazzi, A., Cózar, A., Rossi, C., 2009. Optical characterization of chromophoric dissolved organic matter using wavelength distribution of absorption spectral slopes. Limnol. Oceanogr. 54, 590-597. https://doi.org/10.4319/lo.2009.54.2.0590.
  • [24] Lotliker, A. A., Baliarsingh, S. K., Kumar, T. S., 2016. Satellite Coastal and Oceanographic Research Inter-comparison Exercise (SICOME).
  • [25] Mason, J. D., Cone, M. T., Fry, E. S., 2016. Ultraviolet (250-550 nm) absorption spectrum of pure water. Appl. Opt. 55, 7163. https://doi.org/10.1364/ao.55.007163.
  • [26] Menon, H. B., Adhikari, A., 2018. Remote Sensing of Chlorophyll-A in Case II Waters: A Novel Approach With Improved Accuracy Over Widely Implemented Turbid Water Indices. J. Geophys. Res. Ocean. 123, 8138-8158. https://doi.org/10.1029/2018JC014052.
  • [27] Menon, H. B., Lotliker, A., Nayak, S. R., 2005. Pre-monsoon biooptical properties in estuarine, coastal and Lakshadweep waters. Estuar. Coast. Shelf Sci. 63, 211-223. https://doi.org/10.1016/j.ecss.2004.11.015.
  • [28] Menon, H. B., Sangekar, N. P., Lotliker, A. A., Vethamony, P., 2011. Dynamics of chromophoric dissolved organic matter in Mandovi and Zuari estuaries - A study through in situ and satellite data. ISPRS J. Photogramm. Remote Sens. 66, 545-552. https://doi.org/10.1016/j.isprsjprs.2011.02.011.
  • [29] Minu, P., Lotliker, A. A., Shaju, S. S., Ashraf, P. M., Kumar, T. S., Meenakumari, B., 2016. Performance of operational satellite bio-optical algorithms in different water types in the southeastern Arabian Sea. Oceanologia 58 (4), 317-326. https://doi.org/10.1016/j.oceano.2016.05.005.
  • [30] Minu, P., Lotliker, A. A., Shaju, S. S., SanthoshKumar, B., Ashraf, P. M., Meenakumari, B., 2014. Effect of optically active substances and atmospheric correction schemes on remote-sensing reflectance at a coastal site off Kochi. Int. J. Remote Sens. 35, 5434-5447. https://doi.org/10.1080/01431161.2014.926420.
  • [31] Minu, P., Shaju, S. S., Souda, V. P., Usha, B., Ashraf, P. M., Meenakumari, B., 2015. Hyperspectral Variability of Phytoplankton Blooms in Coastal Waters off Kochi, South-eastern Arabian Sea. Fish. Tech. 52, 218-222.
  • [32] Mitchell, B. G., 1990. Algorithms for determining the absorption coefficient for aquatic particulates using the quantitative filter technique. Ocean Opt. X 1302, 137. https://doi.org/10.1117/12.21440.
  • [33] Mobley, C. D., 2010. Light and Radiometry. Ocean Opt. Web B. 1-9.
  • [34] Nimit, K., Lotlikar, A., Srinivasa Kumar, T., 2016. Validation of MERIS sensor’s CoastColour algorithm for waters off the west coast of India. Int. J. Remote Sens. 37, 2066-2076. https://doi.org/10.1080/01431161.2015.1129564.
  • [35] Oubelkheir, K., Claustre, H., Bricaud, A., Babin, M., 2007. Partitioning total spectral absorption in phytoplankton and colored detrital material contributions. Limnol. Oceanogr. Methods 5, 384-395. https://doi.org/10.4319/lom.2007.5.384.
  • [36] Pope, R. M., Fry, E. S., 1997. Absorption spectrum (380-700nm) of pure water. II. Integrating cavity measurements. Appl. Opt. 36, 8710-8723.
  • [37] Roesler, C. S., Perry, M. J., Carder, K. L., 1989. Modeling in situ phytoplankton absorption from total absorption spectra in productive inland marine waters. Limnol. Oceanogr. 34, 1510-1523.
  • [38] Röttgers, R., Häse, C., Doerffer, R., 2007. Determination of the particulate absorption of microalgae using a point-source integrating-cavity absorption meter: Verification with a photometric technique, improvements for pigment bleaching, and correction for chlorophyll fluorescence. Limnol. Oceanogr. Methods 5, 1-12. https://doi.org/10.4319/lom.2007.5.1.
  • [39] Schofield, O., Bergmann, T., Oliver, M. J., Irwin, A., Kirkpatrick, G., Bissett, W. P., Moline, M. A., Orrico, C., 2004. Inversion of spectral absorption in the optically complex coastal waters of the Mid-Atlantic Bight. J. Geophys. Res. C Ocean. 109, 1-12. https://doi.org/10.1029/2003JC002071.
  • [40] Souda, V. P., Minu, P., Lotliker, A. A., Shaju, S. S., Ashraf, P. M., 2020. Inter-annual variability in the inherent optical properties along the southeastern Arabian Sea from 2009 to 2015. Arab. J. Geosci. 13. https://doi.org/10.1007/s12517-020-5063-z.
  • [41] Stockley, N. D., Röttgers, R., McKee, D., Lefering, I., Sullivan, J. M., Twardowski, M. S., 2017. Assessing uncertainties in scattering correction algorithms for reflective tube absorption measurements made with a WET Labs ac-9. Opt. Express 25, A1139-A1153. https://doi.org/10.1364/oe.25.0a1139.
  • [42] Taylor, K. E., 2005. Taylor Diagram Primer. Work. Pap.
  • [43] Taylor, K. E., 2001. Summarizing multiple aspects of model performance in a single diagram. J. Geophys. Res. 106, 7183-7192. https://doi.org/10.1029/2000JD900719.
  • [44] Twardowski, M. S., Boss, E., Sullivan, J. M., Donaghay, P. L., 2004. Modeling the spectral shape of absorption by chromophoric dissolved organic matter. Mar. Chem. 89, 69-88. https://doi.org/10.1016/j.marchem.2004.02.008.
  • [45] Twardowski, M. S., Rottgers, R., Stramski, D., 2018. Chapter 1: The Absorption Coefficient, An Overview. In: Ocean Optics & Biogeochemistry Protocols for Satellite Ocean Colour Sensor Validation, 1-15.
  • [46] Uitz, J., Huot, Y., Bruyant, F., Babin, M., Claustre, H., 2008. Relating phytoplankton photophysiological properties to community structure on large scales. Limnol. Oceanogr. 53, 614-630.
  • [47] Wollschläger, J., Grunwald, M., Röttgers, R., Petersen, W., 2013. Flow-through PSICAM: A new approach for determining water constituents absorption continuously. Ocean Dyn. 63, 761-775. https://doi.org/10.1007/s10236-013-0629-x.
  • [48] Zaneveld, J. R. V., 2013. Fifty years of inherent optical properties. Methods Oceanogr. 7, 3-20. https://doi.org/10.1016/j.mio.2014.03.002.
  • [49] Zhang, X., Huot, Y., Bricaud, A., Sosik, H. M., 2015. Inversion of spectral absorption coefficients to infer phytoplankton size classes, chlorophyll concentration, and detrital matter. Appl. Opt. 54, 5805-5816. https://doi.org/10.1364/AO.54.005805.
  • [50] Zheng, G., Digiacomo, P. M., 2017. Remote sensing of chlorophyll-a in coastal waters based on the light absorption coefficient of phytoplankton. Remote Sens. Environ. 201, 331-341. https://doi.org/10.1016/j.rse.2017.09.008.
  • [51] Zheng, G., Stramski, D., 2013a. A model based on stacked-constraints approach for partitioning the light absorption coefficient of seawater into phytoplankton and non-phytoplankton components. J. Geophys. Res. Ocean. 118, 2155-2174. https://doi.org/10.1002/jgrc.20115.
  • [52] Zheng, G., Stramski, D., 2013b. A model for partitioning the light absorption coefficient of suspended marine particles into phytoplankton and nonalgal components. J. Geophys. Res. Ocean. 118, 2977-2991. https://doi.org/10.1002/jgrc.20206.
  • [53] Zheng, G., Stramski, D., Digiacomo, P. M., 2015. A model for partitioning the light absorption coefficient of natural waters into phytoplankton, nonalgal particulate, and colored dissolved organic components: A case study for the Chesapeake Bay. J. Geophys. Res. Ocean. 120, 2601-2621. https://doi.org/10.1002/2014JC010604.
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-497f8d2d-6e0c-4b22-838a-1eaabe6befec
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.