Tytuł artykułu
Autorzy
Wybrane pełne teksty z tego czasopisma
Identyfikatory
Warianty tytułu
Języki publikacji
Abstrakty
The entropy of earthquakes is derived by using the Gutenberg–Richter statistical distributions. Both canonical and microcanonical earthquake distributions are given, and Einstein’s fuctuation formula is deduced for earthquakes. The seismic activity of Vrancea in the period 1980–2019 is analyzed, for earthquakes with magnitude greater than two, and the results are compared with the theoretical results. It is shown that the parameter of the magnitude distribution exhibits a tendency of increasing with time, due to the accumulation of small-magnitude earthquakes, interrupted from time to time by ruptures towards smaller values, caused by earthquakes with greater magnitudes. These variations do not obey the normal distribution of the fuctuations. The (small) time variations of the distribution parameter provide a measure of the departure of the seismic activity from an equilibrium process. For Vrancea, these deviations are very small (up to 1% per year).
Wydawca
Czasopismo
Rocznik
Tom
Strony
395--404
Opis fizyczny
Bibliogr. 38 poz.
Twórcy
autor
- Institute of Earth’s Physics, PO Box MG-6, Magurele-Bucharest, Romania
autor
- Institute of Physics and Nuclear Engineering, PO Box MG-35, Magurele-Bucharest, Romania
Bibliografia
- 1. Abramowitz M, Stegun IA (1964) Handbook of mathematical functions, with formulas, graphs and mathematical tables. National Bureau of Standards, Applied Mathematics Series #55, Washington, DC, p 806
- 2. Apostol BF (2020) Bath’s law, correlations and magnitude distributions. arXiv:2006.07591v1 [physics.geo-ph], 13 June
- 3. Apostol BF (2006a) A model of seismic focus and related statistical distributions of earthquakes. Rom Reps Phys 58:583–600
- 4. Apostol BF (2006b) Model of seismic focus and related statistical distributions of earthquakes. Phys Lett A 357:462–466
- 5. Apostol BF (2019a) An inverse problem in seismology: derivation of the seismic source parameters from P an S seismic waves. J Seismol 23:1017–1030
- 6. Apostol BF (2019b) Statistical seismology, internal report. Institute of Earth’s Physics, Magurele
- 7. Berrill JB, Davis RO (1980) Maximum entropy and the magnitude distribution. Bull Seismol Soc Am 70:1823–1831
- 8. Bullen KE (1963) An introduction to the theory of seismology. Cambridge University Press, London
- 9. Console R, Lombardi AM, Murru M, Rhoades D (2003) Bath’s law and the self-similarity of earthquakes. J Geophys Res 108:2128. https://doi.org/10.1029/2001JB001651
- 10. De Santis A, Cianchini G, Favali P, Beranzoli L, Boschi E (2011) The Gutenberg–Richter law and entropy of earthquakes: two case studies in Central Italy. Bull Sesimol Soc Am 101:1386–1395
- 11. De Santis A, Abbattista C, Alfonsi L, Amoruso L, Campuzano SA, Carbone M, Cesaroni C, Cianchini G, De Franceschi G, De Santis A, Di Giovambattista R, Marchetti D, Martino L, Perrone L, Piscini A, Rainone ML, Soldani M, Spogli L, Santoro F (2019) Geosystemics view of earthquakes. Entropy 21:412. https://doi.org/10.3390/e21040412
- 12. Dong WM, Bao AB, Shah HC (1984) Use of maximum entropy principle in earthquake recurrence relationships. Bull Seismol Soc Am 74:725–737
- 13. Einstein A (1909) Zum gegenwaertigen Stand des Strahlungsproblem. Phys Z 10:185–193
- 14. Gibbs JW (1902) Elementary principles in statistical mechanics. Scribner’s sons, New York
- 15. Gulia L, Wiemer S (2019) Real-time discrimination of earthquake foreshocks and aftershocks. Nature 574:193–199
- 16. Gutenberg B, Richter C (1944) Frequency of earthquakes in California. Bull Seismol Soc Am 34:185–188
- 17. Gutenberg B, Richter C (1956) Magnitude and energy of earthquakes. Ann Geofis 9: 1–15 ((2010) Ann Geophys 53:7–12)
- 18. Hanks TC, Kanamori H (1979) A moment magnitude scale. J Geophys Res 84:2348–2350
- 19. Kanamori H (1977) The energy release in earthquakes. J Geophys Res 82:2981–2987
- 20. Kisslinger C (1996) Aftershocks and fault-zone properties. Adv Geophys 38:1–36
- 21. Landau L, Lifshitz E (1980) Statistical physics, course of theoretical physics, vol 5. Elsevier, Oxford
- 22. Lay T, Wallace TC (1995) Modern global seismology. Academic Press, San Diego
- 23. Lombardi AM (2002) Probability interpretation of “Bath’s law”. Ann Geophys 45:455–472
- 24. Main I, Al-Kindy F (2002) Entropy, energy and proximity to criticality in global earthquake populations. Geophys Res Lett. https://doi.org/10.1029/2001GL014078
- 25. Main I, Burton PW (1984) Information theory and the earthquake frequency-magnitude distribution. Bull Seismol Soc Am 74:1409–1426
- 26. Marzocchi W, Sandri L (2003) A review and new insights on the estimation of the bb-value and its uncertainty. Ann Geophys 46:1271–1282
- 27. Masinha L, Shen PY (1987) On the magnitude entropy of earthquakes. Tectonophysics 138:115–119
- 28. Nicholson T, Sambridge M, Gudmundsson O (2000) On entropy and clustering in earthquake hypocentre distributions. Geophys J Int 142:37–51
- 29. Ranalli G (1969) A statistical study of aftershock sequences. Ann Geofis 22:359–397
- 30. Richter CF (1958) Elementary seismology. Freeman, San Francisco
- 31. Romanian Earthquake Catalogue (ROMPLUS Catalog), National Institute for Earth Physics, Romania (2018) (updated)
- 32. Shannon CE (1948) A mathematical theory of communication. Bell Syst Tech J 27(379–423):623–666
- 33. Shen PY, Mansinha L (1983) On the principle of maximum entropy and the earthquake frequency-magnitude relation. Geophys J R Astr Soc 74:777–785
- 34. Stein S, Wysession M (2003) An introduction to seismology, earthquakes, and earth structure. Blackwell, New York
- 35. Udias A (1999) Principles of seismology. Cambridge University Press, New York
- 36. Utsu T (1969) Aftershocks and earthquake statistics (I, II): Source parameters which characterize an aftershock sequence and their interrelations. J Fac Sci Hokkaido Univ Ser VII 3:129–195
- 37. Utsu T, Seki A (1955) A relation between the area of aftershock region and the energy of the mainshock. J Seismol Soc Jpn 7:233 (in Japanese)
- 38. Wiener N (1948) Cybernetics. MIT Press, Cambridge
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-497e027d-8d4f-4680-92d8-66e9e313803c