Identyfikatory
Warianty tytułu
Języki publikacji
Abstrakty
Validation results of a theoretical model that describes the formation of bromate during ozonation of bromide-containing natural waters are presented. An axial dispersion model integrating the nonideal mixing, mass-transfer and a kinetic model that links ozone decomposition reactions from the Tomiyasu, Fukutomi and Gordon ozone decay model with direct and indirect bromide oxidation reactions, oxidation of natural organic matter and reactions of dissolved organics and aqueous bromine was verified. The model was successfully validated with results obtained both at a laboratory and a full scale. Its applicability to different water supply systems was approved.
Czasopismo
Rocznik
Tom
Strony
39–47
Opis fizyczny
Bibliogr. 27 poz., rys., tab.
Twórcy
autor
- AQUA SEEN Spółka z o.o., ul. Siennicka 29, 04-394 Warszawa, Poland
Bibliografia
- 1. Akita K., Yoshida F., 1974. Bubble size, interfacial area and liquid phase mass transfer coefficients in bubble columns. Ind. Eng. Chem. Process Des. Dev., 13, 84?91. DOI: 10.1021/i260049a016.
- 2. Audenaert W.T.M., Callewaert M., Nopens I., Cromphout J., Vanhoucke R., Dumoulin A., Dejans P., Van Hulle S.W.H., 2010. Full-scale modelling of an ozone reactor for drinking water treatment. Chem. Eng. J., 157, 551–557. DOI: 10.1016/j.cej.2009.12.051.
- 3. Biń A.K., Duczmal B., Machniewski P., 2001. Hydrodynamics and ozone mass transfer in a tall bubble column. Chem. Eng. Sci., 56, 6233–6240. DOI: 10.1016/S0009-2509(01)00213-5.
- 4. Calderbank P.H., 1967. Gas absorption from bubbles. 3r d edition, IChemE, London.
- 5. Chowdhury S., Champagne P., McLellan P.J., 2009. Models for predicting disinfection byproduct (DBP) formation in drinking waters: A chronological review. Sci. Tot. Env., 407, 4189-4206. DOI: 10.1016/j.scitotenv.2009.04.006.
- 6. Clift R., Grace J. R., Weber M.E., 1978. Bubbles, drops and particles. Academic Press Inc., New York.
- 7. Davidson J. F., Harrison D., 1966. The behavior of a continuity bubbling f1uidized bed. Chem. Eng. Sci., 21, 731–738. DOI: 10.1016/0009-2509(66)870001-x.
- 8. Griffith P., Wallis G.B., 1961. Two-phase slug flow. J. Heat Transfer, 83, 307?318. DOI: 10.1115/1.3682268.
- 9. Harmathy T. Z., 1960. Velocity of large drops and bubbles in media of infinite or restricted extent. AIChE J., 6, 281–288. DOI: 10.1002/aic.690060222.
- 10. Hassan K. Z. A., Bower K. C., Miller C. M., 2003. Numerical simulation of bromate formation during ozonation of bromide. J. Environ. Eng., 129 (11), 991–998. DOI: 10.1061/(ASCE)0733-9372(2003)129:11(991).
- 11. Haut B., Cartage T., 2005. Mathematical modeling of gas-liquid mass transfer rate in bubble columns operated in the heterogeneous regime. Chem. Eng. Sci., 60, 5937–5944. DOI: 10.1016/j.ces.2005.04.022.
- 12. Hinze J. O., 1955. Fundamentals of the hydrodynamic mechanism of sliding in dispersion processes. AIChE J., 1, 289?295. DOI: 10.10002/aic.690010303.
- 13. ISO 11206:2011. Water quality – Determination of dissolved bromate – Method using ion chromatography (IC) and post column reaction (PRC). Technical Committee: ISO/TC 147/SC 2 Physical, chemical and biochemical methods.
- 14. Jarvis P., Parsons S.A., Smith R., 2007. Modeling bromate formation during ozonation. Ozone Sci. Eng., 29, 429?442. DOI: 10.1080/01919510701643732.
- 15. Lapidus L., Elgin J.C., 1957. Mechanics of vertical moving fluidised systems. AIChE J., 3, 63–68. DOI: 10.1002/ aic.690030112.
- 16. Levenspiel O., 1999. Chemical reaction engineering. John Wiley & Sons, 3rd edition, New York.
- 17. Mariñas B.J., Liang S., Aieta E.M., 1993. Modelling hydrodynamics and ozone residual distribution in a pilotscale ozone bubble-diffuser contractor. J. Am. Water Works Assn., 85, 90–99. DOI: 10.1002/j.1551-8833.1993.
- 18. Mizumo T., Tsuno H., 2010. Evaluation of solubility and the gas-liquid equilibrium coefficient of high concentration gaseous ozone to water. Ozone Sci. Eng., 32, 3–15. DOI: 10.1080/01919510903482376.
- 19. Olsińska U., 2002. Influence of contactor hydrodynamic behaviour on the efficiency of the ozonation process. Polish J. Chem. Technol., 2(4), 21–27.
- 20. Olsińska U., 2003. Modelling of bromate formation in relation to hydrodynamic characteristics of ozone contactors, In: Pawłowski L., Dudzińska M.R., Pawłowski A. (Eds.) Environmental Engineering Studies. Springer, Boston, MA, 109–119. DOI: 10.1007/978-1-4419-8949-9_12.
- 21. Olsińska U., 2019. Numerical modelling of ozonation process with respect to bromate formation. Part I – Model development. Chem. Process Eng., 40, 21–38. DOI: 10.24425/cpe.2018.124994.
- 22. Rhim J.A., Yoon J.H., 2005.Mass transfer characteristics and overall mass transfer coefficient in the ozone contactor. Korean J. Chem. Eng., 22, 201–207. DOI: 10.1007/BF02701485.
- 23. Roustan M., Beck C., Wable O., Duguet J. P., Mallevialle J., 1993. Modelling hydraulics of ozone contactors. Ozone Sci. Eng., 15, 213–226. DOI: 10.1080/01919519308552485.
- 24. Sadiq R., Rodriguez M.J., 2004. Disinfection by-products (DBPs) in drinking water and predictive models for their occurrence: a review. Sci. Total Environ., 321, 21–46. DOI: 10.1016/j.scitotenv.2003.05.001.
- 25. Turner J. C. R., 1966. On bubble flow in liquids and fluidized beds. Chem. Eng. Sci., 21, 971?974. DOI: 10.1016/ 0009-2509(66)85094-7.
- 26. von Gunten U., 2003. Ozonation of drinking water: Part II. Disinfection and by-product formation in presence of bromide, iodide or chlorine. Water Res., 37, 1469–1487. DOI: 10.1016/S0043-1354(02)00458-x.
- 27. von Sonntag C., von Gunten U., 2012.Chemistry of ozone in water and wastewater treatment – from basic principles to applications. IWA Publishing, London
Uwagi
PL
Opracowanie rekordu w ramach umowy 509/P-DUN/2018 ze środków MNiSW przeznaczonych na działalność upowszechniającą naukę (2019).
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-497dddb6-b79d-48c4-b924-c99833c7bdbf