PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

Finite Embeddability of Sets and Ultrafilters

Autorzy
Identyfikatory
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
A set A of natural numbers is finitely embeddable in another such set B if every finite subset of A has a rightward translate that is a subset of B. This notion of finite embeddability arose in combinatorial number theory, but in this paper we study it in its own right. We also study a related notion of finite embeddability of ultrafilters on the natural numbers. Among other results, we obtain connections between finite embeddability and the algebraic and topological structure of the Stone-Čech compactification of the discrete space of natural numbers. We also obtain connections with nonstandard models of arithmetic.
Słowa kluczowe
Rocznik
Strony
195--206
Opis fizyczny
Bibliogr. 9 poz.
Twórcy
autor
  • Mathematics Department, University of Michigan, Ann Arbor, MI 48109, U.S.A.
autor
  • Dipartimento di Matematica, Università di Pisa, 56127 Pisa, Italy
Bibliografia
  • [1] M. Beiglböck, An ultrafilter approach to Jin's theorem, Israel J. Math. 185 (2011), 369-374.
  • [2] C. C. Chang and H. J. Keisler, Model Theory, 3rd ed., North-Holland, 1990.
  • [3] M. Davis, Applied Nonstandard Analysis, Wiley, 1977.
  • [4] M. Di Nasso, Embeddability properties of difference sets, Integers 14 (2014), no. A27.
  • [5] N. Hindman and D. Strauss, Algebra in the Stone-Čech Compactification. Theory and Applications, 2nd ed., de Gruyter, 2012.
  • [6] P. Krautzberger, Idempotent filters and ultrafilters, Ph.D. thesis, Freie Univ. Berlin, 2009.
  • [7] L. Luperi Baglini, Hyperintegers and nonstandard techniques in combinatorics of numbers, Ph.D. thesis, Univ. di Siena, 2012.
  • [8] L. Luperi Baglini, Ultrafilters maximal for finite embeddability, J. Logic Anal. 6 (2014), no. 6, 1-16.
  • [9] I. Z. Ruzsa, On difference sets, Studia Sci. Math. Hungar. 13 (1978), 319-326.
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-497c8069-c28a-4348-b788-fd647c095e4c
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.