Tytuł artykułu
Autorzy
Treść / Zawartość
Pełne teksty:
Identyfikatory
Warianty tytułu
Języki publikacji
Abstrakty
Millions of tons of urban solid waste are discarded yearly in Mexico. The rapid population growth, urbanization, and social development, together with a more significant number of inhabitants, resulted in a massive amount of municipal solid waste (MSW) that is increasing yearly. Most of these end up in landfills without being used for energy, causing severe social and environmental problems. Municipal solid waste (MSW) is the most significant main waste stream (representing 9.21% of the waste that can be used), including plastic bottles, food dishes, cans, bags, and containers. The recycling and sustainable disposal of plastic waste is a significant activity with a high rate of complexity due to various effects that occur during its processes, such as obstructions in mechanisms and pipes, prolonged degradation and biodegradation rates, and the presence of additives, and highly toxic dyes. Pyrolysis is one of the promising technologies for converting waste into sound energy capable of being used in various applications such as power generation, transportation fuel, and multiple thermal purposes. According to the Ministry of Energy (SENER), Mexico has an installed generation capacity of 86,034 MW, of which almost 65% is based on fossil-based technologies.
Słowa kluczowe
Czasopismo
Rocznik
Tom
Strony
227--232
Opis fizyczny
Bibliogr. 30 poz., rys., tab.
Twórcy
autor
- Department of Mechanical Engineering, University of Guanajuato, Carretera Salamanca - Valle de Santiago km 3.5 + 1.8 Community of Palo Blanco, Salamanca, Gto., 36885, Mexico
autor
- Idioms Center, University of Veracruz, Av. Universidad Veracruzana km 7.5, Col. Santa Isabel, 96538 Coatzacoalcos, Ver., México
autor
- Department of Mechanical Engineering, University of Guanajuato, Carretera Salamanca - Valle de Santiago km 3.5 + 1.8 Community of Palo Blanco, Salamanca, Gto., 36885, Mexico
autor
- Department of Mechanical Engineering. University of Veracruz, Adolfo Ruiz Cortínez s/n, Costa verde, Boca del Rio, Ver., 94294, México
autor
- Department of Mechanical Engineering. University of Veracruz, Adolfo Ruiz Cortínez s/n, Costa verde, Boca del Rio, Ver., 94294, México
Bibliografia
- 1. Aisien, E.T., Otuya, I.C., Aisien, F.A. 2021. Thermal and catalytic pyrolysis of waste polypropylene plastic using spent FCC catalyst. Environmental Technology and Innovation, 22, 101455. https://doi.org/10.1016/j.eti.2021.101455
- 2. Al-Salem, S.M., Lettieri, P. 2010. Kinetic study of high density polyethylene (HDPE) pyrolysis. Chemical Engineering Research and Design, 88(12), 1599–1606. https://doi.org/10.1016/j.cherd.2010.03.012
- 3. Ali, M.F., Ahmed, S., Qureshi, M.S. 2011. Catalytic coprocessing of coal and petroleum residues with waste plastics to produce transportation fuels. Fuel Processing Technology, 92(5), 1109–1120. https://doi.org/10.1016/j.fuproc.2011.01.006
- 4. Anas, M., Jan, K., Munawar, N., Afzal, I., Ali, R., Sirajuddin, K. 2019. Pyrolysis of polypropylene over a LZ - Y52 molecular sieve : kinetics and the product distribution. Iranian Polymer Journal. https://doi.org/10.1007/s13726-019-00747-x
- 5. Balat, M. 2008. Diesel-like fuel obtained by catalytic pyrolysis of waste engine oil. Energy Exploration and Exploitation, 26(3), 197–208. https://doi.org/10.1260/014459808786933735
- 6. Barbarias, I., Artetxe, M., Lopez, G., Arregi, A., Bilbao, J., Olazar, M. 2018. Influence of the conditions for reforming HDPE pyrolysis volatiles on the catalyst deactivation by coke. Fuel Processing Technology, 171(September 2017), 100–109. https://doi.org/10.1016/j.fuproc.2017.11.003
- 7. Cardona, S.C., Corma, A. 2000. Tertiary recycling of polypropylene by catalytic cracking in a semibatch stirred reactor. Use of spent equilibrium FCC commercial catalyst. Applied Catalysis B: Environmental, 25(2–3), 151–162. https://doi.org/10.1016/S0926-3373(99)00127-7
- 8. Demirbas, A. 2004. Pyrolysis of municipal plastic wastes for recovery of gasoline-range hydrocarbons. Journal of Analytical and Applied Pyrolysis, 72(1), 97–102. https://doi.org/10.1016/j.jaap.2004.03.001
- 9. Eletta, O.A., Ajayi, O., Ogunleye, O., Tijani, I., Adeniyi, A., Agbana, A. 2017. Identification and Characterisation of Major Hydrocarbons in Thermally Degraded Low Density Polyethylene Films. Journal of Applied Sciences and Environmental Management, 21(6), 1111. https://doi.org/10.4314/jasem.v21i6.20
- 10. Elordi, G., Olazar, M., Lopez, G., Amutio, M., Artetxe, M., Aguado, R., Bilbao, J. 2009. Catalytic pyrolysis of HDPE in continuous mode over zeolite catalysts in a conical spouted bed reactor. Journal of Analytical and Applied Pyrolysis, 85(1–2), 345–351. https://doi.org/10.1016/j.jaap.2008.10.015
- 11. Garforth, A.A., Lin, Y.H., Sharratt, P.N., Dwyer, J. 1998. Production of hydrocarbons by catalytic degradation of high density polyethylene in a laboratory fluidised-bed reactor. Applied Catalysis A: General, 169(2), 331–342. https://doi.org/10.1016/S0926-860X(98)00022-2
- 12. Huang, Y.W., Chen, M.Q., Li, Q.H., Xing, W. 2018. A critical evaluation on chemical exergy and its correlation with high heating value for single and multi-component typical plastic wastes. Energy, 156, 548–554. https://doi.org/10.1016/j.energy.2018.05.116
- 13. Kalargaris, I., Tian, G., Gu, S. 2017a. Combustion, performance and emission analysis of a DI diesel engine using plastic pyrolysis oil. Fuel Processing Technology, 157, 108–115. https://doi.org/10.1016/j.fuproc.2016.11.016
- 14. Kalargaris, I., Tian, G., Gu, S. 2017b. The utilisation of oils produced from plastic waste at different pyrolysis temperatures in a DI diesel engine. Energy, 131, 179–185. https://doi.org/10.1016/j.energy.2017.05.024
- 15. Kalargaris, I., Tian, G., Gu, S. 2018. Experimental characterisation of a diesel engine running on polypropylene oils produced at di ff erent pyrolysis temperatures. Fuel, 211(July 2017), 797–803. https://doi.org/10.1016/j.fuel.2017.09.101
- 16. Kim, S.S., Kim, S. 2004. Pyrolysis characteristics of polystyrene and polypropylene in a stirred batch reactor. Chemical Engineering Journal, 98(1–2), 53–60. https://doi.org/10.1016/S1385-8947(03)00184-0
- 17. Lin, H.T., Huang, M.S., Luo, J.W., Lin, L.H., Lee, C.M., Ou, K.L. 2010. Hydrocarbon fuels produced by catalytic pyrolysis of hospital plastic wastes in a fluidizing cracking process. Fuel Processing Technology, 91(11), 1355–1363. https://doi.org/10.1016/j.fuproc.2010.03.016
- 18. Miskolczi, N., Angyal, A., Bartha, L., Valkai, I. 2009. Fuels by pyrolysis of waste plastics from agricultural and packaging sectors in a pilot scale reactor. Fuel Processing Technology, 90(7–8), 1032–1040. https://doi.org/10.1016/j.fuproc.2009.04.019
- 19. Naturales secretería de medio ambiente y recursos. 2020. Diagnóstico básico para la gestión integral de los residuos.
- 20. Onwudili, J.A., Insura, N., Williams, P.T. 2009. Composition of products from the pyrolysis of polyethylene and polystyrene in a closed batch reactor: Effects of temperature and residence time. Journal of Analytical and Applied Pyrolysis, 86(2), 293–303. https://doi.org/10.1016/j.jaap.2009.07.008
- 21. Qiao, Y., Xu, F., Xu, S., Yang, D., Wang, B., Ming, X., Hao, J., Tian, Y. 2018. Pyrolysis Characteristics and Kinetics of Typical Municipal Solid Waste Components and Their Mixture: Analytical TG-FTIR Study. Energy and Fuels, 32(10), 10801–10812. https://doi.org/10.1021/acs.energyfuels.8b02571
- 22. Ratio, C., Engine, D. 2021. Characterization and Impact of Waste Plastic Oil in a Variable Compression Ratio Diesel Engine.
- 23. Reay, D., Sabine, C., Smith, P., Hymus, G. 2007. Intergovernmental Panel on Climate Change. Fourth Assessment Report. Geneva, Switzerland: Inter-governmental Panel on Climate Change. Cambridge; UK: Cambridge University Press; 2007. Available from: www. ipcc.ch. In Intergovernmental Panel on Climate Change. https://doi.org/10.1038/446727a
- 24. Rehan, M., Nizami, A.S., Shahzad, K., Ouda, O.K.M., Ismail, I.M.I., Almeelbi, T., Iqbal, T., Demirbas, A. 2016. Pyrolytic liquid fuel: A source of renewable electricity generation in Makkah. Energy Sources, Part A: Recovery, Utilization and Environmental Effects, 38(17), 2598–2603. https://doi.org/10.1080/15567036.2016.1153753
- 25. Residuos Sólidos Urbanos (RSU) | Secretaría de Medio Ambiente y Recursos Naturales | Gobierno | gob. mx. (n.d.). Retrieved February 1, 2022, from https://www.gob.mx/semarnat/acciones-y-programas/residuos-solidos-urbanos-rsu
- 26. Scott, D.S., Czernik, S.R., Piskorz, J., Radlein, D.S.A.G. 1990. Fast Pyrolysis of Plastic Wastes. Energy and Fuels, 4(4), 407–411. https://doi.org/10.1021/ef00022a013
- 27. Sharma, B.K., Moser, B.R., Vermillion, K.E., Doll, K.M., Rajagopalan, N. 2014. Production, characterization and fuel properties of alternative diesel fuel from pyrolysis of waste plastic grocery bags. Fuel Processing Technology, 122, 79–90. https://doi.org/10.1016/j.fuproc.2014.01.019
- 28. Singh, R.K., Ruj, B., Sadhukhan, A.K., Gupta, P., Tigga, V.P. 2019. Waste plastic to pyrolytic oil and its utilization in CI engine: Performance analysis and combustion characteristics. Fuel, October, 116539. https://doi.org/10.1016/j.fuel.2019.116539
- 29. Vijayakumar, A., Sebastian, J. 2018. Pyrolysis process to produce fuel from different types of plastic - A review. IOP Conference Series: Materials Science and Engineering, 396(1). https://doi.org/10.1088/1757-899X/396/1/012062
- 30. Yoon, W.L., Park, J.S., Jung, H., Lee, H.T., Lee, D.K. 1999. Optimization of pyrolytic coprocessing of waste plastics and waste motor oil into fuel oils using statistical pentagonal experimental design. Fuel, 78(7), 809–813. https://doi.org/10.1016/S0016-2361(98)00207-5
Uwagi
Opracowanie rekordu ze środków MEiN, umowa nr SONP/SP/546092/2022 w ramach programu "Społeczna odpowiedzialność nauki" - moduł: Popularyzacja nauki i promocja sportu (2022-2023).
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-4974f413-92b4-486d-8f9d-88af1629bbbc