Identyfikatory
Warianty tytułu
Języki publikacji
Abstrakty
Various optimization problems for linear parabolic systems with multiple constant time lags are considered. In this paper, we consider an optimal distributed control problem for a linear complex parabolic system in which different multiple constant time lags appear both in the state equation and in the Neumann boundary condition. Sufficient conditions for the existence of a unique solution of the parabolic time lag equation with the Neumann boundary condition are proved. The time horizon T is fixed. Making use of the Lions scheme [13], necessary and sufficient conditions of optimality for the Neumann problem with the quadratic performance functional with pointwise observation of the state and constrained control are derived. The example of application is also provided
Słowa kluczowe
Czasopismo
Rocznik
Tom
Strony
77--89
Opis fizyczny
Bibliogr. 17 poz., wzory
Twórcy
autor
- AGH University of Science and Technology, Institute of Automatics and Biomedical Engineering, 30-059 Cracow, al.Mickiewicza 30, Poland
Bibliografia
- [1] G. Knowles: Time-optimal control of parabolic systems with boundary conditions involving time delays. J. Optimization Theory and Applications, 25(4), (1978), 563-574.
- [2] A. Kowalewski: Optimal control with initial state not a priori given and boundary condition involving a delay. Lecture Notes in Control and Information Sciences, 95, (1987), 94-108, Springer-Verlag, Berlin-Heidelberg.
- [3] A. Kowalewski: Boundary control of distributed parabolic system with boundary condition involving a time-varying lag. Int. J. Control, 48(6), (1988), 2233-2248.
- [4] A. Kowalewski: Feedback control for a distributed parabolic system with boundary condition involving a time-varying lag. IMA J. Mathematical Control and Information, 7(2), (1990), 143-157.
- [5] A. Kowalewski: Optimality conditions for a parabolic time delay system. Lecture Notes in Control and Information Sciences, 144, (1990), 174-183, Verlag, Berlin-Heidelberg.
- [6] A. Kowalewski: Optimal control of parabolic systems with time-varying lags. IMA J. Mathematical Control and Information, 10(2), (1993), 113-129.
- [7] A. Kowalewski: Optimal control of distributed parabolic systems with multiple time time-varying lags. Int. J. Control, 69 (3), (1998), 361-381.
- [8] A. Kowalewski: Optimizaton of parabolic systems with deviating arguments. Int. J. Control, 72(11), (1999), 947-959.
- [9] A. Kowalewski: Optimal control of time delay parabolic systems. Optimization, 50(1-2), (2001), 205-232.
- [10] A. Kowalewski: Optimal Control of Infinite Dimensional Distributed Parameter Systems with Delays. University of Mining and Metallurgy Press, Cracow 2001.
- [11] A. Kowalewski: Pointwise observation of the state given by the parabolic system with boundary condition involving multiple time delays. Archives of Control Sciences, 26(2), (2016), 189-197.
- [12] A. Kowalewski and J. Duda: On some optimal control problem for a parabolic system with boundary condition involving a time-varying lag. IMA J. Mathematical Control and Information, 9(2), (1992), 131-146.
- [13] J. L. Lions: Optimal control of systems governed by partial differential equations. Springer-Verlag, Berlin-Heidelberg, 1971.
- [14] J. L. Lions and E. Magenes: Non-homogeneous boundary value problems and applications. 1 and 2, Springer-Verlag, Berlin-Heidelberg, 1972.
- [15] L. Schwartz: Teorie de Distributions. Hermann, Paris, 1957.
- [16] P. K. C. Wang: Optimal control of parabolic systems wih boundary conditions involving time delays. SIAM J. Control, 13(2), (1975), 274-293.
- [17] K. H. Wong: Optimal control computation for parabolic systems with boundary conditions involving time delays. J. Optimization Theory and Applications, 53(3), (1987), 475-507.
Uwagi
PL
Opracowanie ze środków MNiSW w ramach umowy 812/P-DUN/2016 na działalność upowszechniającą naukę (zadania 2017).
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-49718405-1bd9-4992-872a-915c04556d72