PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

Adaptive backstepping tracking control for an over-actuated DP marine vessel with inertia uncertainties

Treść / Zawartość
Identyfikatory
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
Designing a tracking control system for an over-actuated dynamic positioning marine vessel in the case of insufficient information on environmental disturbances, hydrodynamic damping, Coriolis forces and vessel inertia characteristics is considered. The designed adaptive MIMO backstepping control law with control allocation is based on Lyapunov control theory for cascaded systems to guarantee stabilization of the marine vessel position and heading. Forces and torque computed from the adaptive control law are allocated to individual thrusters by employing the quadratic programming method in combination with the cascaded generalized inverse algorithm, the weighted least squares algorithm and the minimal least squares algorithm. The effectiveness of the proposed control scheme is demonstrated by simulations involving a redundant set of actuators. The evaluation criteria include energy consumption, robustness, as well accuracy of tracking during typical vessel operation.
Rocznik
Strony
679--693
Opis fizyczny
Bibliogr. 33 poz., rys., tab., wykr.
Twórcy
autor
  • Faculty of Electrical and Control Engineering, Gdańsk University of Technology, G. Narutowicza 11/12, 80-233 Gdańsk, Poland
  • Faculty of Electrical and Control Engineering, Gdańsk University of Technology, G. Narutowicza 11/12, 80-233 Gdańsk, Poland
Bibliografia
  • [1] Bańka, S., Dworak, P. and Jaroszewski, K. (2013). Linear adaptive structure for control of a nonlinear MIMO dynamic plant, International Journal of Applied Mathematics and Computer Science 23(1): 47–63, DOI: 10.2478/amcs-2013-0005.
  • [2] Bodson, M. (2002). Evaluation of optimization methods for control allocation, Journal of Guidance, Control and Dynamics 25(4): 703–711.
  • [3] Boulkroune, A., Bounar, N., M’Saad, M. and Farza, M. (2014). Indirect adaptive fuzzy control scheme based on observer for nonlinear systems: A novel SPR-filter approach, Neurocomputing 135(C): 378–387, DOI: 10.1016/j.neucom.2013.12.011.
  • [4] Du, J., Hu, X., Liu, H. and Chen, C.L.P. (2015). Adaptive robust output feedback control for a marine dynamic positioning system based on a high-gain observer, IEEE Transactions on Neural Networks and Learning Systems 26(11): 2775–2786.
  • [5] El Maguiri, O.E., Giri, F., Dugard, L., Fadil, H.E. and Chaoui, F.Z. (2010). Nonlinear adaptive output feedback control of series resonant dc-dc converters, Proceedings of the American Control Conference, Baltimore, MD, USA, pp. 3287–3292, DOI: 10.1109/ACC.2010.5530481.
  • [6] Fossen, T.I. (2000). A survey on nonlinear ship control: From theory to practice, Proceedings of the 5th IFAC Conference on Manoeuvring and Control of Marine Craft, Aalborg, Denmark, pp. 1–16.
  • [7] Fossen, T.I. (2011). Handbook of Marine Craft Hydrodynamics and Motion Control, John Wiley and Sons Ltd, Chichester.
  • [8] Fossen, T.I., Sagatun, S.I. and Sorensen, A.J. (1996). Identification of dynamically positioning ships, Control Engineering Practice 4(3): 369–376, DOI: 10.1016/0967-0661(96)00014-7.
  • [9] Fu, M., Xu, Y. and Zhou, L. (2016). Bio-inspired trajectory tracking algorithm for dynamic positioning ship with system uncertainties, Proceedings of the 35th Chinese Control Conference (CCC), Chengdu, China, pp. 4562–4566, DOI:10.1109/ChiCC.2016.7554061.
  • [10] Godhavn, J.M., Fossen, T.I. and Berge, S.P. (1998). Nonlinear and adaptive backstepping designs for tracking control of ships, International Journal of Adaptive Control and Signal Processing Marine Systems Control 12(8): 649–670.
  • [11] Hanger, M., Johansen, T.A., Mykland, G.K. and Skullestad, A. (2011). Dynamic model predictive control allocation using CVXGEN, Proceedings of the 9th IEEE International Conference on Control and Automation (ICCA), Santiago, Chile, DOI: 10.1109/ICCA.2011.6137940.
  • [12] Harkegard, O. (2004). Dynamic control allocation using constrained quadratic programming, Journal of Guidance, Control and Dynamics 27(6): 1028–1034.
  • [13] Hassani, V., Sorensen, A.J. and Pascoal, A.M. (2012). Robust dynamic positioning of offshore vessels using mixed-μ synthesis. Part II: Simulation and experimental results, IFAC Workshop on Automatic Control in Offshore Oil and Gas Production, Trondheim, Norway, pp. 183–188, DOI: 10.3182/20120531-2-NO-4020.00043.
  • [14] Johansen, T.A. and Fossen, T.I. (2013). Control allocation—a survey, Automatica 49(5): 1087–1103.
  • [15] Katebi, M.R., Grimble, M.J. and Zhang, Y. (1997). H/∞ robust control design for dynamic ship positioning, IEE Proceedings: Control Theory and Applications 144(2): 110–120, DOI:10.1049/ip-cta:19971030.
  • [16] Krstić, M., Kanellakopoulos, I. and Kokotović, P. (1995). Nonlinear and Adaptive Control Design, Wiley, New York, NY.
  • [17] Lin, X., Xie, Y., Bian, X. and Zhao, D. (2013). Dynamic positioning controller based on unified model in extreme seas, Journal of Computational Information Systems 9(20): 8089–8097.
  • [18] Lindegaard, K.P. and Fossen, T.I. (2003). Fuel-efficient rudder and propeller control allocation for marine craft: Experiments with a model ship, IEEE Transactions on Control Systems Technology 11(6): 850–862, DOI:10.1109/TCST.2003.815613.
  • [19] Loria, A., Fossen, T.I. and Panteley, E. (2000). A separation principle for dynamic positioning of ships: Theoretical and experimental results, IEEE Transactions on Control Systems Technology 8(2): 332–343.
  • [20] Luo, A., Serrani, A., Yurkovich, S., Doman, D.B. and Oppenheimer, M. W. (2004). Model predictive dynamic control allocation with actuator dynamic, Proceedings of the 2004 American Control Conference, Boston, MA, USA, Vol. 2, pp. 1695–1700.
  • [21] McGookin, E.W., Murray-Smith, D.J., Li, Y. and Fossen, T.I. (2000). Ship steering control system optimisation using genetic algorithms, Control Engineering Practice 8(4): 429–443, DOI: 10.1016/S0967-0661(99)00159-8.
  • [22] Oppenheimer, M.W., Doman, D.B. and Bolender, M.A. (2006). Control allocation for over-actuated systems, Proceedings of 14th Mediterranean Conference on Control and Automation, Ancona, Italy, pp. 1–6, DOI:10.1109/MED.2006.328750.
  • [23] Sorensen, A.J. (2011). A survey of dynamic positioning control systems, Annual Reviews in Control 35(1): 123–136.
  • [24] Swaroop, D., Hedrick, J.K., Yip, P.P. and Gerdes, J.C. (2000). Dynamic surface control for a class of nonlinear systems, IEEE Transactions on Automatic Control 45(10): 1893–1899, DOI: 10.1109/TAC.2000.880994.
  • [25] Tannuri, E.A., Agostinho, A.C., Morishita, H.M. and Moratelli, L. (2010). Dynamic positioning systems: An experimental analysis of sliding mode control, Control Engineering Practice 18(10): 1121–1132, DOI:10.1016/j.conengprac.2010.06.07.
  • [26] Tomera, M. (2017). Hybrid switching controller design for the maneuvering and transit of a training ship, International Journal of Applied Mathematics and Computer Science 27(1): 63–77, DOI: 10.1515/amcs-2017-0005.
  • [27] Tsopelakos, A. and Papadopoulos, E. (2017). Design and evaluation of dynamic positioning controllers with parasitic thrust reduction for an overactuated floating platform, IEEE Transaction on Control Systems and Technology 25(1): 145–160.
  • [28] Witkowska, A. (2013). Dynamic positioning system with vectorial backstepping controller, Proceedings of the 18th International Conference on Methods and Models in Automation and Robotics (MMAR), Międzyzdroje, Poland, pp. 842–847.
  • [29] Witkowska, A. and Śmierzchalski, R. (2012). Designing a ship course controller by applying the adaptive backstepping method, International Journal of Applied Mathematics and Computer Science 22(4): 985–997, DOI: 10.2478/v10006-012-0073-y.
  • [30] Witkowska, A. and Śmierzchalski, R. (2018). Adaptive dynamic control allocation for dynamic positioning of marine vessel based on backstepping method and sequential quadratic programming, Ocean Engineering 163(1): 570–582.
  • [31] Xia, G., Xue, J., Jiao, J., Wang, H. and Zhou, H. (2016). Adaptive fuzzy control for dynamic positioning ships with time-delay of actuator, Proceedings of the MTS/IEEE International Conference on OCEANS, Monterey, CA, USA, pp. 1–6, DOI:10.1109/OCEANS.2016.7761043.
  • [32] Zhang, C.-D., Wang, X.-H. and Xiao, J.-M. (2013). Ship dynamic positioning system based on backstepping control, Journal of Theoretical and Applied Information Technology 51(1): 129–136.
  • [33] Zwierzewicz, Z. (2010). Nonlinear adaptive tracking-control synthesis for functionally uncertain systems, International Journal of Adaptive Control and Signal Processing 24(2): 96–105, DOI: 10.1002/acs.1114.
Uwagi
PL
Opracowanie rekordu w ramach umowy 509/P-DUN/2018 ze środków MNiSW przeznaczonych na działalność upowszechniającą naukę (2018).
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-496d08db-1d87-4cd4-9cd0-0d860921ec2c
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.