PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

Two-body wear simulation influence on some direct and indirect dental resin biocomposites : A qualitative analysis

Treść / Zawartość
Identyfikatory
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
Purpose: The aim of this study was to qualitatively assess the outcomes of two in vitro aging methods, thermal-cycling and twobody wear simulation accomplished with a dual-axis chewing device, on the surface characteristics of eight direct and indirect dental resin biocomposites. Methods: Eighty mesial-occlusal-distal dental cavities were restored with four direct nanohybrid composite materials and with four nano- and micro-hybrid lab-fabricated resin composite inlays. After the restored teeth were subjected to thermal-cycling and wear simulation based on mechanical loading, the surface texture features of the restorations were separately analysed for each of the methods, on epoxy resin models using a digital camera, computer-aided-design system, optical stereo-microscopy and scanning electron microscopy. Results: All the dental restorative resin based composites used in this investigation displayed different cyclic wear patterns after undergoing mechanical loading. After thermal-cycling, the group of resin composite inlays showed a better adaptation, a smoother and more polished occlusal surface compared with direct restorative materials. Only two of direct nanohybrid resin composites performed better after two aging methods. One nanohybrid and the other two microhybrid resin inlays did not perform as expected when they were subjected to simulated wear compared to the rest of test materials. Conclusions: The use of the two-body wear simulation method revealed important information about the behavior of the dental resin-based composites when multiple oral factors are involved in a lab-simulated condition. Furthermore, the macro- and micro-morphological analysis showed different abrasion patterns among the materials being tested according to the filler percentage and distribution of the particles within the resin matrix.
Rocznik
Strony
61--72
Opis fizyczny
Bibliogr. 25 poz., rys., tab.
Twórcy
  • Department of Dental Materials and Ergonomics, “Iuliu Hatieganu” University of Medicine and Pharmacy, Cluj-Napoca, Romania
autor
  • CAD-CAM Center, Private dental laboratory, Cluj-Napoca, Romania
autor
  • Department of Cell and Molecular Biology, “Iuliu Hatieganu” University of Medicine and Pharmacy, Cluj-Napoca, Romania
autor
  • Department of Periodontology, “Iuliu Hatieganu” University of Medicine and Pharmacy, Cluj-Napoca, Romania
autor
  • Department of Preventive Dentistry, “Iuliu Hatieganu” University of Medicine and Pharmacy, Cluj-Napoca, Romania
Bibliografia
  • [1]. Amaral F.L.B., Colucci V., Palma-Dibb R.G., Corona S.A.M. Assessment of in vitro methods used to promote adhesive interface degradation: A critical review, J Esthet Restor Dent, 2007, vol. 19, 340-354.
  • [2]. Beautifill Ii - Product brochure. http://www.shofu.com/shofu_images/Literature/beautifil%20ii%20brochure.pdf. Accessed 2 May 2013.
  • [3]. Ceramage - Product brochure. http://www.shofu.com/shofu_images/Literature/ceramage%20brochure%201.08%20v2. pdf . Accessed 2 May 2013.
  • [4]. Curtis R.V., Watson T.F. Mixed-methods approach to wear evaluation in posterior composite dental restorations. In: Dental biomaterials. Imaging, testing and modelling, Cambridge: Woodhead Publising Limited and CRC Press LLC, 2008.
  • [5]. Gonulol N., Ozer S., Tunc E.S. Water sorption, solubility, and color stability of giomer restoratives, J Esthet Restor Dent, 2014, vol. 21,1-6. DOI: 10.1111/jerd.12119. [Epub ahead of print]
  • [6]. Gradia-Product brochure. http://www.gceurope.com/pid/67/manual/en_Manual.pdf . Accessed 2 May 2013.
  • [7]. Ilie N., Hickel R. Resin composite restorative materials, Aust Dent J, 2011, vol. 56, 59– 66.
  • [8]. ISO. Dental materials—guidance on testing of wear. Technical Specification, 2001, No. 14569-2, Part 2.
  • [9]. Kalore-Product brochure. http://www.kalore.net/GCA_KALORE_Technical_Manual.pdf . Accessed 2 May 2013.
  • [10]. Koottathape N., Takahashi H., Iwasaki N., Kanehira M., Finger W.J. Morphological features of composite resin surfaces after two- and three-body wear simulation, World J Dent, 2012, vol. 3, 221-228.
  • [11]. Lambrechts P., Debels E., Van Landuyt K., Peumans M., Van Meerbeek B. How to simulate wear? Overview of existing methods, Dent Mater, 2006, vol. 22, 693-701.
  • [12]. Lee A., He L.H., Lyons K., Swain M.V. Tooth wear and wear investigations in dentistry, J Rehab, 2012, vol. 39, 217-225.
  • [13]. Milewski G. Numerical and experimental analysis of effort of human tooth hard tissues in terms of proper occlusal loadings, Acta Bioeng Biomech, 2005, vol. 7(1), 47–59.
  • [14]. Palaniappan S., Bharadwaj D., Mattar D.L., Peumans M., Van Meerbeek B., Lambrechts P. Three-year randomized clinical trial to evaluate the clinical performance and wear of a nanocomposite versus a hybrid composite, Dent Mater, 2009, vol. 25, 1302-1314.
  • [15]. Popovici A., Fodor O., Moldovan M., Roman A., Borzea D. “In vitro” study of a new composite biomaterial for indirect restorations, Optoelectron Adv Mater – Rapid Comm, 2008, vol. 2, 891-894.
  • [16]. Premise - Product brochure. http://www.kerrdental.com/kerrdental-composites-premisetechinfo-2. Accessed 2 May 2013.
  • [17]. Premise Indirect Systems, Kerr Laboratory. http://www.kerrlab.com/dfu. Accessed 2 May 2013.
  • [18]. Sajewicz E., Kulesza Z. A new tribometer for friction and wear studies of dental materials and hard tooth tissues, Tribol Int, 2007, vol. 40, 885–895.
  • [19]. Signum Ceramis - Product brochure. http://webmedia.kulzerdental.com/media/hkg/downloads_new/signum_2/signum_ceramis/GBA_Signum_cera mis_INT.pdf . Accessed 2 May 2013.
  • [20]. Soanca A., Roman A., Moldovan M., Perhaita I., Tudoran L.B., Romînu M. Study on thermal behaviour, structure and filler morphology of some indirect composite resins, Dig J Nanomater Bios, 2012, vol. 7, 1071-1081.
  • [21]. Soanca A., Rominu M., Moldovan M., Bondor C.I., Nicola C., Roman A. Microscopic evaluation of the interface between composite biomaterials and dentin biostructure, Dig J Nanomater Bios, 2011, vol. 6, 349-358.
  • [22]. Steiner M., Mitsias M.E., Ludwig K., Kern M. In vitro evaluation of a mechanical testing chewing simulator, Dent Mater, 2009, vol. 25, 494-499.
  • [23]. Turssi C.P., De Moraes Purquerio B., Serra M.C. Wear of dental resin composites: Insights into underlying processes and assessment methods—A review, J Biomed Mater Res 2003, vol. 65, 280–285.
  • [24]. Venus Pearl - Product brochure. http://webmedia.kulzerdental.com/media/hkg/downloads_new/venus_5/venus_pearl_1/GBA_Venus_Pearl_IN T.pdf. Accessed 2 May 2013
  • [25]. Wojda S., Szoka B., Sajewiczs E. Tribological characteristics of enamel–dental material contacts investigated in vitro, Acta Bioeng Biomech, 2015, vol. 17, 21-29.
Uwagi
PL
Opracowanie ze środków MNiSW w ramach umowy 812/P-DUN/2016 na działalność upowszechniającą naukę.
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-4968aeee-216a-4a8e-8da6-288a1c426b28
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.