PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

Wideband spectral emission measurements from laser-produced plasma EUV/SXR source based on a double gas puff target

Treść / Zawartość
Identyfikatory
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
We present spectral emission characteristics from laser-plasma EUV/SXR sources produced by irradiation of < 1 J energy laser pulse on eleven different double stream gas puff targets, with most intense electronic transitions identified in the spectral range from 1 nm to 70 nm wavelength which corresponds to photon energy from 18 eV to 1240 eV. The spectra were obtained using grazing incidence and transmission spectrographs from laser-produced plasma emission, formed by the interaction of a laser beam with a double stream gas puff target. Laser pulses with a duration of 4 ns and energy of 650 mJ were used for the experiment. We present the results obtained from three different spectrometers in the wavelength ranges of SXR (1-5.5 nm), SXR/EUV (4-15.5 nm), and EUV (10-70 nm). In this paper, detailed information about the source, gas targets under investigation, the experimental setup, spectral measurements and the results are presented and discussed. Such data may be useful for the identification of adequate spectral emissions from gasses in the EUV and SXR wavelength ranges dedicated to various experiments (i.e. broadband emission for the X-ray coherence tomography XCT) or may be used for verification of magnetohydrodynamic plasma codes.
Rocznik
Strony
701--719
Opis fizyczny
Bibliogr. 39 poz., rys., tab., wykr.
Twórcy
  • Military University of Technology, Institute of Optoelectronics, ul. gen. Sylwestra Kaliskiego 2, 00-908 Warsaw, Poland
  • Military University of Technology, Institute of Optoelectronics, ul. gen. Sylwestra Kaliskiego 2, 00-908 Warsaw, Poland
  • Military University of Technology, Institute of Optoelectronics, ul. gen. Sylwestra Kaliskiego 2, 00-908 Warsaw, Poland
  • Military University of Technology, Institute of Optoelectronics, ul. gen. Sylwestra Kaliskiego 2, 00-908 Warsaw, Poland
  • Military University of Technology, Institute of Optoelectronics, ul. gen. Sylwestra Kaliskiego 2, 00-908 Warsaw, Poland
Bibliografia
  • [1] International Organization for Standardization. (2007). Space environment (natural and artificial) - Process for determining solar irradiances (ISO 21348:2007). https://www.iso.org/standard/39911.html.
  • [2] Hotta, E., Sakai, Y., Zhu, Q., Huang, B., Kumai, H., & Watanabe, M. (2011). EUV and SXR sources based on discharge produced plasma. 2011 Academic International Symposium on Optoelectronics and Microelectronics Technology, 4-7. https://doi.org/10.1109/AISMOT.2011.6159301
  • [3] Malm, E. B., Monserud, N. C., Brown, C. G., Wachulak, P. W., Xu, H., Balkrishnan, G., Chao, W., Anderson, E., & Marconi, M. C. (2013). Tabletop single-shot extreme ultraviolet Fourier transform holography of an extended object. Optics Express, 21(8), 9959-9966. https://doi.org/10.1364/OE.21.009959
  • [4] Bravo, H., Szapiro, B. T., Wachulak, P. W., Marconi, M. C., Chao, W., Anderson, E. H., Menoni, C. S., & Rocca, J. J. (2011). Demonstration of nanomachining with focused extreme ultraviolet laser beams. IEEE Journal of Selected Topics in Quantum Electronics, 18(1), 443-448. https://doi.org/10.1109/JSTQE.2011.2158392
  • [5] Niemann, B., Rudolph, D., & Schmahl, G. (1976). X-ray microscopy with synchrotron radiation. Applied Optics, 15(8), 1883-1884. https://doi.org/10.1364/AO.15.001883
  • [6] Jacobsen, C., & Kirz, J. (1998). X-ray microscopy with synchrotron radiation. Nature Structural Biology, 5(8), 650-653. https://doi.org/10.1038/1341
  • [7] Rumsby, P. T. (1985). Laser produced plasmas as intense X-ray sources for microscopy at the Central Laser Facility. Journal of Microscopy, 138(3), 245-265. https://doi.org/10.1111/j.1365-2818.1985.tb02619.x
  • [8] Bartnik, A., Wachulak, P., Fok, T., Wegrzyński, L., Fiedorowicz, H., Pisarczyk, T., Chodukowski, T., Kalinowska, Z., Dudzak, R., Dostal, J., Krousky, E., Skala, J., Ullschmied, J., Hrebicek, J., & Medrik, T. (2015). Photoionized plasmas induced in neon with extreme ultraviolet and soft X-ray pulses produced using low and high energy laser systems. Physics of Plasmas, 22, 043302. https://doi.org/10.1063/1.4919024
  • [9] Trail, J. A., & Byer, R. L. (1989). Compact scanning soft-x-ray microscope using a laser-produced plasma source and normal-incidence multilayer mirrors. Optics Letters, 14(11), 539-541. https://doi.org/10.1364/OL.14.000539
  • [10] Su, M. G., Min, Q., Cao, S. Q., Sun, D. X., Hayden, P., O’Sullivan, G., & Dong, C. Z. (2017). Evolution analysis of EUV radiation from laser-produced tin plasmas based on a radiation hydrodynamics model. Scientific Reports, 7, 45212. https://doi.org/10.1038/srep45212
  • [11] Fujimoto, J., Hori, T., Yanagida, T., Ohta, T., Kawasuji, Y., Shiraishi, Y., Abe, T., Kodama, T., Nakarai, H., Yamzaki, T., & Mizoguchi, H. (2012). Development of laser-produced plasma-based EUV light source technology for HVM EUV lithography. Extreme Ultraviolet (EUV) Lithography III, 8322. https://doi.org/10.1117/12.916093
  • [12] Malmqvist, L., Rymell, L., Berglund, M., & Hertz, H. M. (1996). Liquid-jet target for laser-plasma soft x-ray generation. Review of Scientific Instruments, 67(12), 4150-4153. https://doi.org/10.1063/1.1147561
  • [13] Fiedorowicz, H., & Bartnik, A. (2005). X-ray laser emission from a laser-irradiated gas puff target. Bulletin of the Polish Academy of Sciences: Technical Sciences, 53(2), 103-111. https://journals.pan.pl/Content/111758/PDF/%2853-2%29103.pdf.
  • [14] Chkhalo, N. I., Garakhin, S. A., Lopatin, A. Ya., Nechay, A. N., Pestov, A. E., Polkovnikov, V. N., Salashchenko, N. N., Tsybin, N. N., & Zeuv, S. Yu. (2018). Conversion efficiency of a laser-plasma source based on a Xe jet in the vicinity of a wavelength of 11 nm. AIP Advances, 8(10), 105003. https://doi.org/10.1063/1.5048288
  • [15] Banine, V., & Moors, R. (2004). Plasma sources for EUV lithography exposure tools. J. Phys. D: Appl. Phys., 37(23), 3207-3212. https://doi.org/10.1088/0022-3727/37/23/001
  • [16] Tallents, G. J. (2019). Opacity effects on laser-produced plasma radiation sources. Journal of Applied Physics, 126(8). https://doi.org/10.1063/1.5111720
  • [17] Fiedorowicz, H., Bartnik, A., Jarocki, R., Rakowski, R., & Szczurek, M. (2000). Enhanced X-ray emission in the 1-keV range from a laser-irradiated gas puff target produced using the double-nozzle setup. Applied Physics B, 70(2), 305-308. https://doi.org/10.1007/s003400050050
  • [18] Wachulak, P., Bartnik, A., & Fiedorowicz, H. (2010). Sub-70 nm resolution tabletop microscopy at 13.8 nm using a compact laser-plasma EUV source. Optics Letters, 35(14), 2337-2339. https://doi.org/10.1364/OL.35.002337
  • [19] Wachulak, P., Bartnik, A., Skorupka, M., Kostecki, J., Jarocki, R., Szczurek, M., Wegrzyński, L., Fok, T., & Fiedorowicz, H. (2013). Water-window microscopy using a compact, laser-plasma SXR source based on a double-stream gas-puff target. Applied Physics B, 111(2), 239-247. https://doi.org/10.1007/s00340-012-5324-y
  • [20] Wachulak, P., Duda, M., Fok, T., Bartnik, A., Wang, Z., Huenag, Q., Sarzyński, A., Jancarek, A., & Fiedorowicz, H., (2018). Single-shot near edge X-ray absorption fine structure (NEXAFS) spectroscopy using a laboratory laser-plasma light source. Materials, 11(8), 1303. https://doi.org/10.3390/ma11081303
  • [21] Wachulak, P., Bartnik, A., Jarocki, R., & Fiedorowicz, H. (2012). Characterization of multi-jet gas puff targets for high-order harmonic generation using EUV shadowgraphy. Nuclear Instruments and Methods in Physics Research Section B: Beam Interactions with Materials and Atoms, 285, 102-106. https://doi.org/10.1016/j.nimb.2012.05.006
  • [22] Bartnik, A., Fiedorowicz, H., Jarocki, R., Kostecki, J., Szczurek, M., & Wachulak, P. (2011). Laser-plasma EUV source dedicated for surface processing of polymers. Nuclear Instruments and Methods in Physics Research Section A: Accelerators, Spectrometers, Detectors and Associated Equipment, 647(1), 125-135. https://doi.org/10.1016/j.nima.2011.05.033
  • [23] Wachulak, P., Bartnik, A., & Fiedorowicz, H. (2018). Optical coherence tomography (OCT) with 2 nm axial resolution using a compact laser plasma soft X-ray source. Scientific Reports, 8(1). https://doi.org/10.1038/s41598-018-26909-0
  • [24] Sizyuk, V., Hassanein, A., Morozov, V., Tolkach, V., Sizyuk, T., Rice, B. (2006). Numerical Simulation of Laser-Produced Plasma Devices for EUV Lithography Using the Heights Integrated Model. Numerical Heat Transfer, Part A: Applications, 49(3), 215-236. https://doi.org/10.1080/10407780500324996
  • [25] O’Sullivan, G., Li, B., D’Arcy, R., Dunne, P., Hayden, P., Kilbane, D., McCormack, T., Ohashi, H., O’Reilly, F., Sheridan, P., Sokell, E., Suzuki, C., & Higashiguchi, T. (2015). Spectroscopy of highly charged ions and its relevance to EUV and soft x-ray source development. Journal of Physics B: Atomic, Molecular and Optical Physics, 48(14). https://doi.org/10.1088/0953-4075/48/14/144025
  • [26] Masnavi, M., & Parchamy, C. (2019). Calculation of extreme-ultraviolet radiation conversion efficiency from a laser-produced tin plasma source. Physics Open, 1, 100003. https://doi.org/10.1016/j.physo.2019.100003
  • [27] Berglund, M., Rymell, L., Peuker, M., Wilhein, T., & Hertz, H. M. (2000). Compact water-window transmission X-ray microscopy. Journal of Microscopy, 197(3), 268-273. https://doi.org/10.1046/j.1365-2818.2000.00675.x
  • [28] Ayele, M., Wachulak, P., Czwartos, J., Adjei, D., Bartnik, A., Wegrzyński, Ł., Szczurek, M., Pina, L., & Fiedorowicz, H. (2017). Development and characterization of a laser-plasma soft X-ray source for contact microscopy. Nuclear Instruments and Methods in Physics Research Section B: Beam Interactions with Materials and Atoms, 411, 35-43. https://doi.org/10.1016/j.nimb.2017.03.082
  • [29] Michette, A. G. (1989). Laser-generated plasmas: Source requirements for X-ray microscopy. Proc. SPIE 1140, X-Ray Instrumentation in Medicine and Biology, Plasma Physics, Astrophysics, and Synchrotron Radiation, France, 289-296. https://doi.org/10.1117/12.961838
  • [30] Fuchs, S., Rödel, C., Blinne, A., Zastrau, U., Wünsche, M., Hilbert, V., Glaser, L., Viefhaus, J., Frumker, E., Corkum, P., Förster, E., & Paulus, G. (2016). Nanometer resolution optical coherence tomography using broad bandwidth XUV and soft x-ray radiation. Scientific Reports, 6, 20658. https://doi.org/10.1038/srep20658
  • [31] Gray, W. J., Keiter, P. A., Lefevre, H., Patterson, C. R., Davis, J. S., Powell, K. G., Kuranz, C. C., & Drake. R. P. (2019). Atomic modelling of photoionization fronts in nitrogen gas. Physics of Plasmas, 26(5), 052901. https://doi.org/10.1063/1.5090803
  • [32] Wachulak, P., Duda, M., Bartnik, A., Sarzyński, A., Wegrzyński, Ł., Nowak, M., Jancarek, A., & Fiedorowicz, H. (2018). Compact system for near edge X-ray absorption fine structure(NEXAFS) spectroscopy using a laser-plasma light source. Optics Express, 26(7), 8260-8274. https://doi.org/10.1364/OE.26.008260
  • [33] Kramida, A., Ralchenko, Yu., Reader, J. & NIST ASD Team (2020). NIST Atomic Spectra Database (version 5.8). https://doi.org/10.18434/T4W30F
  • [34] Kelly, R. L. (1973). Atomic and ionic emission lines below 2000 Angstroms, hydrogen through krypton. NRL Report 7599, Naval Research Laboratory, Washington. https://doi.org/10.2172/6644558
  • [35] Morgner, H., & Niehaus, A. (1979). Experimental and theoretical study of the Penning ionization of H atoms by He metastables. Journal of Physics B: Atomic and Molecular Physics, 12(11), 1805. https://doi.org/10.1088/0022-3700/12/11/008
  • [36] Saber, I., Bartnik, A., Wachulak, P., Skrzecznowski, W., Jarocki, R., & Fiedorowicz, H. (2017). Temporal variations of electron density and temperature in Kr/Ne/H2 photoionized plasma induced by nanosecond pulses from extreme ultraviolet source. Physics of Plasmas, 24, 063501. https://doi.org/10.1063/1.4984254
  • [37] Aguilera, J. A., & Aragon, C. (2007). Multi-element Saha-Boltzmann and Boltzmann plots in laser-induced plasmas. Spectrochimica Acta Part B: Atomic Spectroscopy, 62(4), 378-385. https://doi.org/10.1016/j.sab.2007.03.024
  • [38] Zakharov, S. V., Novikov, V. G., & Choi, P. (2006). Z*-code for DPP and LPP source modeling. In Bakshi, V. (Eds.), EUV Sources for Lithography. Spie Press. https://doi.org/10.1117/3.613774.Ch8
  • [39] Lung, H. K., Chen, M. H., Morgan, W. L., Ralchenko, Y., & Lee, R. W. (2005). FLYCHK: Generalized population kinetics and spectral model for rapid spectroscopic analysis for all elements. High Energy Density Physics, 1(1), 3-12. https://doi.org/10.1016/j.hedp.2005.07.001
Uwagi
1. The research was funded by the National Science Centre (NCN) (2016/23/G/ST2/04319, UMO-2015/17/B/ST7/03718, and UMO-2015/19/B/ST3/00435); European Union’s Horizon 2020 research and innovation program Laserlab-Europe V (871124).
2. Opracowanie rekordu ze środków MNiSW, umowa Nr 461252 w ramach programu "Społeczna odpowiedzialność nauki" - moduł: Popularyzacja nauki i promocja sportu (2021).
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-49642170-53ed-4cb1-a089-9e14600c0e94
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.