PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Powiadomienia systemowe
  • Sesja wygasła!
  • Sesja wygasła!
Tytuł artykułu

Predicting Spatial Distribution of Plant Functional Traits in a Forest-Steppe Zone

Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
We investigated the response mechanisms of plant functional traits to environmental factors at the community level in order to elucidate the adaptive and survival strategies of plants in different environmental gradients. 184 vegetation sampling plots were laid by stratified random sampling in the Saihanba region of Hebei, China. Three functional traits (leaf nitrogen content, LNC; specific leaf area, SLA; leaf dry matter content, LDMC) were measured and the community-level weighted means of the trait values were calculated by the species coverage values. Climate and terrain data were generated from the climate model ClimateAP and using ArcGIS. Finally, eight environmental factors, including climate, topographical, and soil factor, were recorded and the association with functional traits was analysed using a generalized additive model. Model testing indicated a good predictability for the SLA and LDMC while a relatively poor predictability was seen with LNC. Environmental factors that significantly impacted SLA included elevation, degree-days above 0°C, mean annual precipitation and total soil nitrogen content. In contrast, LDMC was significantly influenced by elevation, total soil nitrogen and phosphorous content while LNC was affected by elevation and degree-days above 0°C. High values of SLA and LNC were found in areas at lower elevations. The distribution of high LDMC values indicated that plant leaves have a relatively high tolerance and resistance to stress, which was better for plant to grow in the adverse environment. At the community level, clarifying plant functional traits distribution and their changes with environmental gradients is useful for the potential vegetation restoration.
Rocznik
Strony
1--13
Opis fizyczny
Bibliogr. 53 poz., rys., tab., wykr.
Twórcy
  • College of Resources and Environmental Sciences, China Agricultural University, Beijing 100193, China
  • Hebei Province Key Laboratory of Forest Trees Germplasm Resources and Forest Protection, College of Forestry, Hebei Agricultural University, 2596, Lekai South Street, Baoding 071000, China
  • National Long-term Scientific Research Base of Forest Cultivation in Saihanba of Hebei, Chengde 067000, China
  • Hebei Province Key Laboratory of Forest Trees Germplasm Resources and Forest Protection, College of Forestry, Hebei Agricultural University, 2596, Lekai South Street, Baoding 071000, China
  • National Long-term Scientific Research Base of Forest Cultivation in Saihanba of Hebei, Chengde 067000, China
Bibliografia
  • 1. Asner G. P., Seastedt T. R., Townsend A. R. 1997 – The decoupling of terrestrial carbon and nitrogen cycles – Bioscience, 47: 226-234.
  • 2. Bao L., Liu Y. H. 2009 – [Comparison of leaf functional traits in different forest communities in Mt. Dongling of Beijing] – Acta Ecologica Sinica, 29: 3692-3703 (in Chinese).
  • 3. Bodegom P. M. V., Douma J. C., Witte J. P. M., Ordoñez J. C., Bartholomeus R. P., Aerts R. 2012 – Going beyond limitations of plant functional types when predicting global ecosystem-atmosphere fluxes: exploring the merits of traits-based approaches – Glob. Ecol. Biogeogr. 21: 625-636.
  • 4. Cornelissen J. H. C., Lavorel S., Garnier E., Díaz S., Buchmann N., Gurvich D. E., Reich P. B., ter Steege H., Morgan H. D., van der Heijden M. G. A., Pausas J. G., Poorter H. 2003 – A handbook of protocols for standardised and easy measurement of plant functional traits worldwide – Aust. J. Bot. 51: 335-380.
  • 5. Craine J. M., Lee W. G. 2003 – Covariation in leaf and root traits for native and non-native grasses along an altitudinal gradient in New Zealand – Oecologia, 134: 471-478.
  • 6. Díaz S., Cabido M., Zak M., Martínez Carretero E., Araníbar J. 1999 – Plant functional traits, ecosystem structure and land-use history along a climatic gradient in central-western Argentina – J. Veg. Sci. 10: 651-660.
  • 7. Ding J., Wu Q., Yan H., Zhang S. 2011 – [Effects of topographic variations and soil characteristics on plant functional traits in a subtropical evergreen broad-leaved forest] – Biodiversity Science, 19: 158-167 (in Chinese).
  • 8. Douma J. C., Bodegom P. M. V. 2012 – Towards a functional basis for predicting vegetation patterns, incorporating plant traits in habitat distribution models – Ecography, 35: 294-305.
  • 9. Duan Y. Y., Song L. J., Niu S. Q., Huang T., Yang G. H., Hao W. F. 2017 – [Variation in leaf functional traits of different-aged Robinia pseudoacacia communities and relationships with soil nutrients] – Chinese Journal of Applied Ecology, 28: 28-36 (in Chinese).
  • 10. Dubuis A., Rossier L., Pottier J., Pellissier L., Vittoz P., Guisan A., Rossier J., Pottier L., Pellissier P., Vittozand A. 2013 – Predicting current and future spatial community patterns of plant functional traits – Ecography, 36: 1158-1168.
  • 11. Fonseca C. R., Overton J. M., Collins B., Westoby M. 2001 – Shift in trait-combination along rainfall and phosphorus gradients – J. Ecol. 88: 964-977.
  • 12. Gong S. H, Wen Z. M., Shi Y. 2011 – [The response of community-weighted mean plant functional traits to environmental gradients in Yanhe river catchment] – Acta Ecologica Sinica, 31: 6088-6097 (in Chinese).
  • 13. Guo W. H., Wang H., Yu M. K., Wu T. G., Han Y. Z. 2017 – [Latitude variation mechanism of leaf traits of Metasequoia glyptostroboides in eastern coastal China] – Chinese Journal of Applied Ecology, 28: 772-778 (in Chinese).
  • 14. Han W. X., Fang J. Y., Guo D. L., Zhang Y. 2005 – Leaf nitrogen and phosphorus stoichiometry across 753 terrestrial plant species in China – New Phytol. 168: 377-385.
  • 15. Hastie T. J., Tibshirani R. J. 1990 – Generalized Additive Models – Chapman and Hall/ CRC.
  • 16. He X. H., Wen Z. M., Wang J. X. 2008 – [Spatial distribution of major grassland species and its relations to environment in Yanhe River catchment based on generalized additive model] – Chinese Journal of Ecology, 27: 1718-1724 (in Chinese).
  • 17. Hikosaka K., Dai N., Ishii H. S., Hirose T. 2010 – Photosynthesis-nitrogen relationships in species at different altitudes on Mount Kinabalu, Malaysia – Ecol. Res. 17: 305-313.
  • 18. Hu M. Y., Zhang L., Luo T. X., Shen W. 2012 – [Variations in leaf functional traits of Stipa purpurea along a rainfall gradient in Xizang, China] – Chinese Journal of Plant Ecology, 36: 136-143 (in Chinese).
  • 19. Kogami H., Hanba Y. T., Kibe T. I., Masuzawa T. 2010 – CO2 transfer conductance, leaf structure and carbon isotope composition of Polygonum cuspidatum leaves from low and high altitudes – Plant Cell Environ. 24: 529-538.
  • 20. Liu Y., Liu G., Dafu B., Cheng W., Jiang L. 2017 – [Effects of topographic factors on leaf traits of dominant species in different forest communities in Daqinggou nature reserves] – Scientia Silvae Sinicae, 53: 154-162 (in Chinese).
  • 21. Lu X. H., Ding Y., Zang R. G., Zou Z. C. 2011 – [Analysis of functional traits of woody plant seedlings in an old-growth tropical lowland rain forest on Hainan Island, China] – Chinese Journal of Plant Ecology, 35: 1300-1309 (in Chinese).
  • 22. Luan Z. H., Shao D. K., Yang L. J., Gu D. Z. 2013 – [Comparative analysis on adaptation characteristic of Rhododendron chrysanthum Pall. leaves in different altitudes of Changbai Mountain] – Northern Horticulture, 19: 80-83 (in Chinese).
  • 23. Milla R., Reich P. B. 2007 – The scaling of leaf area and mass: the cost of light interception increases with leaf size – Proc. R. Soc. B-Biol. Sci. 274: 2109-2115.
  • 24. Moor H., Hylander K., Norberg J. 2015 – Predicting climate change effects on wetland ecosystem services using species distribution modeling and plant functional traits – Ambio, 44: 113-126.
  • 25. Ordoñez J. C., Van Bodegom P. M., Witte J. P. M., Wright I. J., Reich P. B., Aerts R. 2010 – A global study of relationships between leaf traits, climate and soil measures of nutrient fertility – Glob. Ecol. Biogeogr. 18: 137-149.
  • 26. Pérez-Harguindeguy N., Diaz S., Gamier E., Lavorel S., Poorter H., Jaureguiberry P., Bret-Harte M., Comwell W., Craine J., Gurvich D. 2013 – New handbook for stand-ardised measurement of plant functional traits worldwide – Aust. J. Bot. 61: 167-234.
  • 27. Qi J., Ma K. M., Zhang Y. X. 2007 – [The altitudinal variation of leaf traits of Quercus liaotungensis and associated environmental explanations] – Acta Ecologica Sinica, 27: 930-937 (in Chinese).
  • 28. Qi J., Ma K. M., Zhang Y. X. 2008 – [Comparisons on leaf traits of Quercus liaotungensis Koidz. on different slope positions in Dongling Moutain of Beijing] – Acta Ecologica Sinica, 28 (1): 122-128 (in Chinese).
  • 29. Qin P. Y., Yang H. J., Jiang F. L., Zhang S. B., Tian X. M., Huang X. R., Zhang Z. D. 2016 – [Quantitative classification of natural plant communities in the Saihanba National Nature Reserve, Hebei Province, China] – Chinese Journal of Applied Ecology, 27 (5): 1383-1392 (in Chinese).
  • 30. Reich P. B., Oleksyn J. 2004 – Global patterns of plant leaf N and P in relation to temperature and latitude – Proc. Natl. Acad. Sci. U.S.A. 101: 11001-11006.
  • 31. Roche P., Díaz-Burlinson N., Gachet S. 2004 – Congruency analysis of species ranking based on leaf traits: which traits are the more reliable? – Plant Ecol. 174: 37-48.
  • 32. Rose L., Rubarth M. C., Hertel D., Leuschner C. 2013 – Management alters interspecific leaf trait relationships and trait-based species rankings in permanent meadows – J. Veg. Sci. 24: 239-250.
  • 33. Shen Z. H., Zhao J. 2007 – [Prediction of the spatial patterns of species richness based on the plant-topography relationship: An application of GAMs approach] – Acta Ecologica Sinica, 03: 953-963 (in Chinese).
  • 34. Shipley B., Laughlin D. C., Grégory S., Rafael O. 2011 – A strong test of a maximum entropy model of trait-based community assembly – Ecology, 92: 507-517.
  • 35. Smith V. H. 1992 – Effects of nitrogen: phosphorus supply ratios on nitrogen fixation in agricultural and pastoral ecosystems – Biogeochemistry, 18: 19-35.
  • 36. Sottile G. D., Meretta P. E., Tonello M. S., Bianchi M. M., Mancini M. V. 2015 – Disturbance induced changes in species and functional diversity in southern Patagonian forest-steppe ecotone – For. Ecol. Manage. 353: 77-86.
  • 37. Song L. L., Fan J. W., Wu S. H. 2011 – [ Research Advances on Changes of Leaf Traits along an Altitude Gradient] – Progress in Geography, 30: 1431-1439 (in Chinese).
  • 38. Su B., Han X. G., Huang J. H., Qu C. M. 2000 – [The nutrient use efficiency (NUE) of plants and it's implications on the strategy of plant adaptation to nutrient-Stressed environments] – Acta Ecologica Sinica, 20: 335-343 (in Chinese).
  • 39. Swartzman G., Huang C., Kaluzny S. 1992 – Spatial analysis of Bering Sea groundfish survey data using generalized additive models – Can. J. Fish. Aquat. Sci. 49: 1366-1378.
  • 40. Swenson N. G., Weiser M. D. 2010 – Plant geography upon the basis of functional traits: an example from eastern North American trees – Ecology, 91: 2234-2241.
  • 41. Wang T., Hamann A., Spittlehouse D. L., Murdock T. Q. 2012 – Climate WNA – high-resolution spatial climate data for western North America – J. Appl. Meteorol. Climatol. 51: 16-29.
  • 42. Wang G. Y., Wang T. L., Kang H. J., Mang S. R., Riehl B, Liu S. R, Guo P. T., Li Q. L., Innes J. 2016 – Adaptation of Asia-Pacific forests to climate change – J. Forestry Res. 27: 469-488.
  • 43. Wei S. G., Dai Y., Liu B., Zhu A., Duan Q., Wu L., Ji D., Ye A., Hua Y., Qian Z. A. 2013 – China dataset of soil properties for land surface modeling – J. Adv. Model. Earth Syst. 5: 212-224.
  • 44. Westoby M., Falster D. S., Moles A. T., And P. A. V., Wright I. J. 2002 – Plant ecological strategies: some leading dimensions of variation between species – Annu. Rev. Eco. Syst. 33: 125-159.
  • 45. Wilson P. J., Thompson K., Hodgson J. G. 1999 – Specific leaf area and leaf dry matter content as alternative predictors of plant strategies – New Phytol. 143: 155-162.
  • 46. Wood S. N. 2017 – Generalized additive models: an introduction with R – Chapman and Hall/CRC.
  • 47. Wright I. J., Groom P. K., Lamont B. B., Poot P., Prior L. D., Reich P. B., Schulze E.-D., Veneklaas E. J., Westoby M. 2004 – Leaf trait relationships in Australian plant species – Funct. Plant Biol. 31: 551-558.
  • 48. Wright I. J., Reich P. B., Westoby M. 2001 – Strategy shifts in leaf physiology, structure and nutrient content between species of high- and low-rainfall and high- and low-nutrient habitats – Funct. Ecol. 15: 423-434.
  • 49. Wu C. C., Tsui C. C., Hseih C. F., Asio V. B., Chen Z. S. 2007 – Mineral nutrient status of tree species in relation to environmental factors in the subtropical rain forest of Taiwan – For. Ecol. Manage. 239: 81-91.
  • 50. Wu D. D., Zhou Y. B., Yu D. P. 2009 – [Physiological response of Betula ermanii at different altitudes in Changbai Mountain] – Acta Ecologica Sinica, 29: 2279-2285 (in Chinese).
  • 51. Yang D. M., Zhang J. J., Dan Z., Qian M. J., Yao Z., Jin L. M. 2012 – [Leaf and twig functional traits of woody plants and their relationships with environmental change: A review] – Chinese Journal of Ecology, 31: 702-713 (in Chinese).
  • 52. Yang L. J., Shao D. K., Luan Z. H. 2013 – [Changes of functional traits of Rhododendron chrysanthum Pall. leaves with different altitudes in Changbai Mountain] – Jiangsu Agricultural sciences, 41: 149-151 (in Chinese).
  • 53. Zhang K., Hou J. H., He N. P. 2017 – [Leaf functional trait distribution and controlling factors of Pinus tabuliformis] – Acta Ecologica Sinica, 37: 736-749 (in Chinese).
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-4963b81a-faef-4949-b2b7-460bd96fdd7a
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.