Tytuł artykułu
Treść / Zawartość
Pełne teksty:
Identyfikatory
Warianty tytułu
Języki publikacji
Abstrakty
The problem of optimal reorientation of the spacecraft orbit is considered. For solving the problem we used quaternion equations of motion written in rotating coordinate system. The use of quaternion variables makes this consideration more efficient. The problem of optimal control is solved on the basis of the maximum principle. An example of numerical solution of the problem is given.
Słowa kluczowe
Czasopismo
Rocznik
Tom
Strony
119--128
Opis fizyczny
Bibliogr. 17 poz., rys., wzory
Twórcy
autor
- Saratov State University and Institute of Precision Mechanics and Control Russian Academy of Sciences, Saratov, Russia
autor
- Saratov State University, Saratov, Russia
autor
- Saratov State University and Institute of Precision Mechanics and Control Russian Academy of Sciences, Saratov, Russia
Bibliografia
- [1] V. K. Abalakin, E. P. Aksenov, E. A. Grebenikov, V. G. Demin and Yu. A. Ryabov: Spravochnoe rukovodstvo po nebesnoi mekhanike i astrodinamike (Handbook on celestial mechanics and astrodynamics). Nauka, Moscow, 1976, (in Russian).
- [2] T. V. Bordovitsyna: Sovremennye chislennye metody v zadachakh nebesnoi mekhaniki (Modern numerical methods in problems of celestial mechanics). Nauka, Moscow, 1984, (in Russian).
- [3] V. N. Branets and I. P. Shmyglevskii: Primenenie kvaternionov v zadachakh orientatsii tverdogo tela (Use of quaternions in the problems of orientation of solid bodies). Nauka, Moscow, 1973, (in Russian).
- [4] V. A. Brumberg: Analytical techniques of celestial mechanics. Springer-Verlag, Berlin, 1995.
- [5] Yu. N. Chelnokov: Application of quaternions in the theory of orbital motion of an artificial satellite. I. Cosmic Research, 30(6) (1992), 612-621.
- [6] Yu. N. Chelnokov: Application of quaternions in the theory of orbital motion of an artificial satellite. II. Cosmic Research, 31(3) (1993), 409-418.
- [7] Yu. N. Chelnokov: Kvaternionnye i bikvaternionnye modeli i metody mekhaniki tverdogo tela i ikh prilozheniya. Geometriya i kinematika dvizheniya (Quaternion and bi-quaternion models and methods of solid state mechanics and their applications. Geometry and kinematics of motion). Fizmatlit, Moscow, 2006, (in Russian).
- [8] Yu. N. Chelnokov: The use of quaternions in the optimal control problems of motion of the center of mass of a spacecraft in a newtonian gravitational field: I. Cosmic Research, 39(5) (2001), 470-484.
- [9] Yu. N. Chelnokov: The use of quaternions in the optimal control problems of motion of the center of mass of a spacecraft in a newtonian gravitational field: II. Cosmic Research, 41(1) (2003), 85-99.
- [10] Yu. N. Chelnokov: The use of quaternions in the optimal control problems of motion of the center of mass of a spacecraft in a newtonian gravitational field: III. Cosmic Research, 41(5) (2003), 460-477.
- [11] A. Deprit: Ideal frames for perturbed keplerian motions. Celestial mechanics, 13(2) (1976), 253-263.
- [12] G. N. Duboshin: Nebesnaya mekhanika: Osnovnye zadachi i metody (Celestial Mechanics: Main Problems and Methods). Nauka, Moscow, 1964, (in Russian).
- [13] S. A. Ishov and V. A. Romanenko: Forming and correction of a high-elliptical orbit of an Earth satellite with low-thrust engine. Cosmic Research, 35(3) (1997), 268-277.
- [14] O. M. Kamel and A. S. Soliman: On the optimization of the generalized coplanar Hohmann impulsive transfer adopting energy change concept. Acta Astronautica, 56(4) (2005), 431-438.
- [15] B. E. Mabsout, O. M. Kamel and A. S. Soliman: The optimization of the orbital Hohmann transfer. Acta Astronautica, 65(7-8) (2009), 1094-1097.
- [16] A. Miele and T. Wang: Optimal transfers from an Earth orbit to a Mars orbit. Acta Astronautica, 45(3) (1999), 119-133.
- [17] S. Yu. Ryzhov and I. S. Grioriev: On solving the problems of optimization of trajectories of many-revolution orbit transfers of spacecraft. Cosmic Research, 44(3) (2006), 258-267.
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-4961abc6-a7c4-478f-a949-b1edf672e66b