PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

Modeling total surface current in the Persian Gulf and the Oman Sea by combination of geodetic and hydrographic observations and assimilation with in situ current meter data

Wybrane pełne teksty z tego czasopisma
Identyfikatory
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
Surface currents in oceanic environment are of vital importance from economical, biological and environmental aspects. Modelling ocean currents has generally been performed using numerical ocean circulation models as a solution to initial-boundary value problems in oceanic domain. Due to lack of knowledge about model parameters as well as initial and boundary values, they need to be externally calibrated for accurate local and regional applications. In this study, an alternative approach is proposed to incorporate spaceborne geodetic observations as well as hydrographic data to estimate the total surface current in the Persian Gulf and the Oman Sea. Being the data-driven approach, the method is comparable to numerical ocean models and regionally it is more accurate and simpler in application. The proposed method focuses on the computation of dynamic topography (DT) by least squares variance component estimation combining two different schemes. They are (1) DT estimation via direct observations of sea surface height from satellite altimetry and (2) steric and non-steric modeling of sea level anomaly using temperature and salinity data for the steric component; and Gravity Recovery and Climate Experiment observations for the non-steric component. Ultimately, the total surface current is obtained by computing the horizontal gradient of DT using geostrophic equation and adding the components of the Ekman current. Moreover, the estimated total surface current is further improved by assimilating with in situ current meter data using 3D-Variational data assimilation method and it is validated against two control stations. This assimilation leads to improvement of about 3 to 15 cm/s in total surface current computed using geostrophic equation and Ekman current. Besides, to illustrate the significance of the proposed approach, the estimated total surface current is externally validated and compared with the output of Copernicus Marine Environment Monitoring Service (CMEMS), as a numerical ocean model developed for oceanographic applications. Our comparison reveals that the proposed method is more accurate and reliable than CMEMS products. As for the circulation and current pattern, the estimated surface velocities reveal the existence of eddies in the region of the Persian Gulf and the Oman Sea, indicating the occurrence of cyclonic and anti-cyclonic circulations. Moreover, they elucidate that the velocities are lower in spring and summer and higher in autumn and winter.
Czasopismo
Rocznik
Strony
2839--2863
Opis fizyczny
Bibliogr. 73 poz., rys., tab.
Twórcy
  • Faculty of Geodesy and Geomatics Engineering, K. N. Toosi University of Technology, Mirdamad Crossing, Tehran, 19697-64499, Iran
  • Faculty of Geodesy and Geomatics Engineering, K. N. Toosi University of Technology, Mirdamad Crossing, Tehran, 19697-64499, Iran
  • School of Engineering, University of Newcastle, University Drive, Callaghan, NSW, 2308, Australia
  • Institute of Geodesy, University of Stuttgart, Geschwister-Scholl-Str. 24D, 70174, Stuttgart, Germany
Bibliografia
  • 1. Aken HM (2007) The oceanic thermohaline circulation: an introduction. Springer, Berlin
  • 2. Amiri-Simkooei AR, Tiberius CC, Teunissen PJ (2007) Assessment of noise in GPS coordinate time series: methodology and results. J Geophys Res. https://doi.org/10.1029/2006jb004913
  • 3. Balmino G (2009) Efficient propagation of error covariance matrices of gravitational models: application to GRACE and GOCE. J Geod 83(10):989–995. https://doi.org/10.1007/s00190-009-0317-2
  • 4. Barker DM, Huang W, Guo Y, Bourgeois AJ, Xiao QN (2004) A three-dimensional variational data assimilation system for MM5: implementation and initial results. Mon Weather Rev 132(4):897–914. https://doi.org/10.1175/1520-0493(2004)1322.0.co;2
  • 5. Benveniste J (2010) Radar altimetry: past, present and future. Coastal altimetry. Springer, Berlin. https://doi.org/10.1007/978-3-642-12796-0_1
  • 6. Belyaev KP, Kuleshov AA, Smirnov IN, Tanajura CA (2019) Comparison of data assimilation methods in hydrodynamics ocean circulation models. Math Models Comput Simul 11(4):564–574. https://doi.org/10.1134/s2070048219040045
  • 7. Bingham RJ, Haines K, Lea D (2014) A comparison of GOCE and drifter-based estimates of the North Atlantic steady-state surface circulation. Int J Appl Earth Obs Geoinf 35:140–150. https://doi.org/10.1016/j.jag.2014.03.012
  • 8. Blain CA (2000) Modeling three-dimensional thermohaline-driven circulation in the Arabian Gulf. Estuarine and Coastal Modeling. In: Estuarine and coastal modeling. Proceedings of the 6th international conference, pp 74–93. American Society of Civil Engineers
  • 9. Bonnefond P, Exertier P, Laurain O, Guillot A, Guinle T, Picot N, Féménias P (2014) A multi-mission absolute calibration site. http://www.aviso.oceanobs.com/fileadmin/documents/OSTST/2013/oral/Bonnefond_et_al-OSTST-2013.pdf
  • 10. Bonnefond P, Exertier P, Laurain O, Guillot A, Picot N, Cancet M, Lyard F (2015) SARAL/AltiKa absolute calibration from the multi-mission Corsica facilities. Mar Geod 38(sup1):171–192. https://doi.org/10.1080/01490419.2015.1029656
  • 11. Bosch W, Dettmering D, Schwatke C (2014) Multi-mission cross-calibration of satellite altimeters: constructing a long-term data record for global and regional sea level change studies. Remote Sensing 6(3):2255–2281. https://doi.org/10.3390/rs6032255
  • 12. Bruinsma SL, Förste C, Abrikosov O, Lemoine J, Marty J, Mulet S, Rio M, Bonvalot S (2014) ESA’s satellite-only gravity field model via the direct approach based on all GOCE data. Geophys Res Lett 41(21):7508–7514. https://doi.org/10.1002/2014gl062045
  • 13. Burgan HI, Aksoy H (2022) Daily flow duration curve model for ungauged intermittent subbasins of gauged rivers. J Hydrol 604:127429. https://doi.org/10.1016/j.jhydrol.2021.127249
  • 14. Castruccio F, Verron J, Gourdeau L, Brankart J, Brasseur P (2008) Joint altimetric and in-situ data assimilation using the GRACE mean dynamic topography: a 1993–1998 hindcast experiment in the tropical Pacific Ocean. Ocean Dyn 58(1):43–63. https://doi.org/10.1007/s10236-007-0131-4
  • 15. Chao S, Kao TW, Al-Hajri KR (1992) A numerical investigation of circulation in the Arabian Gulf. J Geophys Res 97(C7):11219–11236. https://doi.org/10.1029/92jc00841
  • 16. Chambers DP (2006) Observing seasonal steric sea level variations with GRACE and satellite altimetry. J Geophys Res 111(C3):C03010. https://doi.org/10.1029/2005JC002914
  • 17. Chang CH, Kuo CY, Shum CK, Yi Y, Rateb A (2016) global surface and subsurface geostrophic currents from multi-mission satellite altimetry and hydrographic data, 1996–2011. J Mar Sci Technol 24(6):Article 16. https://doi.org/10.6119/JMST-016-1026-7
  • 18. Chen JL, Wilson CR, Tapley BD, Famiglietti JS, Rodell M (2005) Seasonal global mean sea level change from satellite altimeter, GRACE, and geophysical models. J Geod 79(9):532–539. https://doi.org/10.1007/s00190-005-0005-9
  • 19. Church JA, White NJ, Hunter JR (2006) Sea-level rise at tropical Pacific and Indian Ocean islands. Glob Planet Change 53(3):155–168. https://doi.org/10.1016/j.gloplacha.2006.04.001
  • 20. Dettmering D, Schwatke C, Boergens E, Seitz F (2016) Potential of ENVISAT radar altimetry for water level monitoring in the Pantanal wetland. Remote Sensing 8(7):596. https://doi.org/10.3390/rs8070596
  • 21. Doglioni F (2017) Coastal altimetry for the computation of a Mean Dynamic Topography in the Mediterranean Sea (Master's thesis, Università di Bologna, Bologna, Italy). Retrieved from https://amslaurea.unibo.it/id/eprint/14553
  • 22. Elshorbagy W, Azam MH, Taguchi K (2006) Hydrodynamic characterization and modeling of the Arabian Gulf. J Waterw Port Coast Ocean Eng 132(1):47–56. https://doi.org/10.1061/(asce)0733-950x(2006)132:1(47)
  • 23. Fatolazadeh F, Voosoghi B, Raoofian Naeeni M (2016) Correction of hydrological and oceanic effects from GRACE data by combination of the steric sea level, altimetry data and GLDAS model. Acta Geophys 64(4):1193–1210. https://doi.org/10.1515/acgeo-2016-0034
  • 24. Fecher T, Pail R, Gruber T (2017) GOCO05c: a new combined gravity field model based on full normal equations and regionally varying weighting. Surv Geophys 38(3):571–590. https://doi.org/10.1007/s10712-016-9406-y
  • 25. Feng G, Jin S, Zhang T (2013) Coastal sea level changes in Europe from GPS, tide Gauge, satellite altimetry and GRACE, 1993–2011. Adv Space Res 51(6):1019–1028. https://doi.org/10.1016/j.asr.2012.09.011
  • 26. Förste C, Bruinsma SL, Abrikosov O, Lemoine JM, Marty JC, Flechtner F, Balmino G, Barthelmes F, Biancale R (2014) EIGEN-6C4 the latest combined global gravity field model including GOCE data up to degree and order 2190 of GFZ Potsdam and GRGS Toulouse. GFZ Data Serv. https://doi.org/10.5880/icgem.2015.1
  • 27. Förste C, Bruinsma S, Abrikosov O, Rudenko S, Lemoine JM, Marty JC, Neumayer KH, Biancale R (2016) EIGEN-6S4 A time-variable satellite-only gravity field model to d/o 300 based on LAGEOS, GRACE and GOCE data from the collaboration of GFZ Potsdam and GRGS Toulouse. V. 2.0. GFZ Data Services. https://doi.org/10.5880/icgem.2016.008
  • 28. Fox-Kemper B, Adcroft A, Böning CW, Chassignet EP, Curchitser E, Danabasoglu G, Eden C, England MH, Gerdes R, Greatbatch RJ, Griffies SM, Hallberg RW, Hanert E, Heimbach P, Hewitt HT, Hill CN, Komuro Y, Legg S, Le Sommer J, Masina S, Marsland SJ, Penny SG, Qiao F, Ringler TD, Treguier AM, Tsujino H, Uotila P, Yeager SG (2019) Challenges and prospects in ocean circulation models. Front Mar Sci 6:65. https://doi.org/10.3389/fmars.2019.00065
  • 29. Geruo A, Wahr J, Zhong S (2012) Computations of the viscoelastic response of a 3-D compressible earth to surface loading: an application to glacial isostatic adjustment in Antarctica and Canada. Geophys J Int 192(2):557–572. https://doi.org/10.1093/gji/ggs030
  • 30. Hamden MH, Din AH, Wijaya DD, Yusoff MY, Pa’suya MF (2021) Regional mean sea surface and mean dynamic topography models around Malaysian seas developed from 27 years of along-track multi-mission satellite altimetry data. Front Earth Sci. https://doi.org/10.3389/feart.2021.665876
  • 31. Han D, Wahr J (1995) The viscoelastic relaxation of a realistically stratified earth, and a further analysis of postglacial rebound. Geophys J Int 120(2):287–311. https://doi.org/10.1111/j.1365-246x.1995.tb01819.x
  • 32. Haines B, Desai S, Born B (2014) The long-term altimeter calibration record from the harvest platform. http://www.aviso.oceanobs.com/fileadmin/documents/OSTST/2013/oral/Haines_harvest_2013.pdf
  • 33. Hosseinibalam F, Hassanzadeh S, Rezaei-Latifi A (2011) Three-dimensional numerical modeling of thermohaline and wind-driven circulations in the Persian Gulf. Appl Math Model 35(12):5884–5902. https://doi.org/10.1016/j.apm.2011.05.040
  • 34. Ide K, Courtier P, Ghil M, Lorenc AC (1997) Unified notation for data assimilation: operational, sequential and variational (gtSpecial IssueltData assimilation in Meteorology and oceanography: theory and practice). J Meteorol Soc Jpn Ser II 75(1):181–189. https://doi.org/10.2151/jmsj1965.75.1b_181
  • 35. Jayne SR, Wahr JM, Bryan FO (2003) Observing ocean heat content using satellite gravity and altimetry. J Geophys Res Oceans. https://doi.org/10.1029/2002jc001619
  • 36. Jordà G, Gomis D (2013) On the interpretation of the steric and mass components of sea level variability: the case of the Mediterranean basin. J Geophys Res Oceans 118(2):953–963. https://doi.org/10.1002/jgrc.20060
  • 37. Knudsen P, Bingham R, Andersen O, Rio M (2011) A global mean dynamic topography and ocean circulation estimation using a preliminary GOCE gravity model. J Geod 85(11):861–879. https://doi.org/10.1007/s00190-011-0485-8
  • 38. Kämpf J, Sadrinasab M (2005) The circulation of the Persian Gulf: a numerical study. Ocean Sci Discuss 2(3):129–164. https://doi.org/10.5194/osd-2-129-2005
  • 39. LeGrand P, Schrama EJ, Tournadre J (2003) An inverse estimate of the dynamic topography of the ocean. Geophys Res Lett. https://doi.org/10.1029/2002gl014917
  • 40. Liu Y, Weisberg RH, Vignudelli S, Roblou L, Merz CR (2012) Comparison of the X-TRACK altimetry estimated currents with moored ADCP and HF radar observations on the West Florida Shelf. Adv Space Res 50:1085–1098. https://doi.org/10.1016/j.asr.2011.09.012
  • 41. Liu Y, Weisberg RH, Vignudelli S, Mitchum GT (2014) Evaluation of altimetry-derived surface current products using Lagrangian drifter trajectories in the eastern Gulf of Mexico. J Geophys Res Oceans 119:2827–2842. https://doi.org/10.1002/2013JC009710
  • 42. Mulet S, Rio M-H, Etienne H, Artana C, Cancet M, Dibarboure G, Feng H, Husson R, Picot N, Provost C, Strub PT (2021) The new CNES-CLS18 global mean dynamic topography. Ocean Sci 17:789–808. https://doi.org/10.5194/os-17-789-2021
  • 43. Müller S, Brockmann JM, Schuh WD (2014) Consistent combination of gravity field, altimetry and hydrographic data. In: Marti U (ed) IAG symposium, Venice 2013, gravity, geoid and height systems (GGHS 2012), IAG symposia, vol 141. Springer, pp 267–273. https://doi.org/10.1007/978-3-319-10837-7_34
  • 44. Müller FL, Dettmering D, Wekerle C, Schwatke C, Passaro M, Bosch W, Seitz F (2020) Ocean surface currents in the northern Nordic seas from a combination of multi-mission satellite altimetry and numerical modeling. https://doi.org/10.5194/egusphere-egu2020-4412
  • 45. Passaro M, Cipollini P, Vignudelli S, Quartly G, Snaith H (2014) ALES: a multi-mission adaptive subwaveform retracker for coastal and open ocean altimetry. Remote Sens Environ 145:173–189. https://doi.org/10.1016/j.rse.2014.02.008
  • 46. Pirooznia M, Raoofian Naeeni M (2020) The application of least-square collocation and variance component estimation in crossover analysis of satellite altimetry observations and altimeter calibration. J Oper Oceanogr. https://doi.org/10.1080/1755876x.2019.1681873
  • 47. Pirooznia M, Emadi SR, Alamdari MN (2016) The time series spectral analysis of satellite altimetry and coastal tide gauges and tide modeling in the coast of Caspian Sea. Open J Mar Sci 06(02):258–269. https://doi.org/10.4236/ojms.2016.62021
  • 48. Poulain P, Menna M, Mauri E (2012) Surface geostrophic circulation of the Mediterranean Sea derived from drifter and satellite altimeter data. J Phys Oceanogr 42(6):973–990. https://doi.org/10.1175/jpo-d-11-0159.1
  • 49. Raj RP (2016) Surface velocity estimates of the north Indian Ocean from satellite gravity and altimeter missions. Int J Remote Sens 38(1):296–313. https://doi.org/10.1080/01431161.2016.1266106
  • 50. Reynolds MR (1993) Physical oceanography of the gulf, Strait of Hormuz, and the Gulf of Oman, Results from the Mt Mitchell expedition. Mar Pollut Bull 27:35–59. https://doi.org/10.1016/0025-326x(93)90007-7
  • 51. Reynolds RW, Smith TM (1994) Improved global sea surface temperature analyses using optimum interpolation. J Clim 7(6):929–948. https://doi.org/10.1175/1520-0442(1994)0072.0.co;2
  • 52. Ries J, Bettadpur S, Eanes R, Kang Z, Ko U, McCullough C, Nagel P, Pie N, Poole S, Richter T, Save H, Tapley B (2016) The combined gravity model GGM05C. GFZ Data Serv. https://doi.org/10.5880/icgem.2016.002
  • 53. Rio M, Hernandez F (2004) A mean dynamic topography computed over the world ocean from altimetry, in situ measurements, and a geoid model. J Geophys Res. https://doi.org/10.1029/2003jc002226
  • 54. Rio M, Mulet S, Picot N (2014) Beyond GOCE for the ocean circulation estimate: synergetic use of altimetry, gravimetry, and in situ data provides new insight into geostrophic and Ekman currents. Geophys Res Lett 41(24):8918–8925. https://doi.org/10.1002/2014gl061773
  • 55. Sadrinasab M, Kämpf J (2004) Three-dimensional Flushing times of the Persian Gulf. Geophys Res Lett. https://doi.org/10.1029/2004gl020425
  • 56. Soltanpour A, Pirooznia M, Aminjafari S, Zareian P (2017) Persian Gulf and Oman Sea tide modeling using satellite altimetry and tide Gauge data (TM-IR01). Mar Georesour Geotechnol 36(6):677–687. https://doi.org/10.1080/1064119x.2017.1366608
  • 57. Sotillo MG, Mourre B, Mestres M, Lorente P, Aznar R, García-León M, Liste M, Santana A, Espino M, Álvarez E (2021) Evaluation of the operational CMEMS and coastal downstream ocean forecasting services during the storm gloria (January 2020). Front Mar Sci 8:644525. https://doi.org/10.3389/fmars.2021.644525
  • 58. Stewart RH (2009) Introduction to physical oceanography. Orange Grove Text Plus
  • 59. Stys T (2009) Lecture notes in numerical methods of differential equations. Bentham Science Publishers, Sharjah
  • 60. Sudre J, Maes C, Garçon V (2013) On the global estimates of geostrophic and Ekman surface currents. Limnol Oceanogr Fluids Environ 3(1):1–20. https://doi.org/10.1215/21573689-2071927
  • 61. Swenson S, Chambers D, Wahr J (2008) Estimating geocenter variations from a combination of GRACE and ocean model output. J Geophys Res Solid Earth. https://doi.org/10.1029/2007jb005338
  • 62. Teunissen PJ (1988) Towards a least-squares framework for adjusting and testing of both functional and stochastic models
  • 63. Thoppil PG, Hogan PJ (2010) A modeling study of circulation and eddies in the Persian Gulf. J Phys Oceanogr 40(9):2122–2134. https://doi.org/10.1175/2010jpo4227.1
  • 64. Tourian MJ (2013) Application of spaceborne geodetic sensors for hydrology. PhD thesis Universität Stuttgart
  • 65. Vergos GS, Tziavos IN, Sideris MG (2012) On the determination of sea level changes by combining altimetric, tide gauge, satellite gravity and atmospheric observations. In: Kenyon S, Pacino M, Marti U (eds) Geodesy for planet earth. International Association of Geodesy Symposia, vol 136. Springer, Berlin. https://doi.org/10.1007/978-3-642-20338-1_15
  • 66. Vignudelli S, Kostianoy AG, Cipollini P, Benveniste J (2011) Coastal altimetry. Springer, Berlin
  • 67. Wahr J, Molenaar M, Bryan F (1998) Time variability of the earth’s gravity field: hydrological and oceanic effects and their possible detection using GRACE. J Geophys Res Solid Earth 103(B12):30205–30229. https://doi.org/10.1029/98jb02844
  • 68. Wang G, Cheng L, Boyer T, Li C (2017) Halosteric sea level changes during the Argo era. Water 9(7):484. https://doi.org/10.3390/w9070484
  • 69. Watson C, White N, Church J, Beardsley J, King M, Coleman R (2014) Ongoing monitoring of absolute bias from the Australian in-situ calibration sites: Bass Strait and Storm Bay. http://www.aviso.oceanobs.com/fileadmin/documents/OSTST/2013/oral/Watson_Absolute_Bias.pdf
  • 70. Wu Y, Huang J, He X, Luo Z, Wang H (2022) Coastal mean dynamic topography recovery based on multivariate objective analysis by combining data from synthetic aperture radar altimeter. Remote Sensing 14(1):240. https://doi.org/10.3390/rs14010240
  • 71. Xu X, Zhao Y, Reubelt T, Tenzer R (2017) A GOCE only gravity model GOSG01S and the validation of GOCE related satellite gravity models. Geod Geodyn 8(4):260–272. https://doi.org/10.1016/j.geog.2017.03.013
  • 72. Yao F, Johns WE (2010) A HYCOM modeling study of the Persian Gulf: 1. Model configurations and surface circulation. J Geophys Res. https://doi.org/10.1029/2009jc005781
  • 73. Zonn IS, Kosarev AN, Glantz M, Kostianoy AG (2010) The Caspian Sea encyclopedia. Springer, Berlin
Uwagi
Opracowanie rekordu ze środków MNiSW, umowa nr POPUL/SP/0154/2024/02 w ramach programu "Społeczna odpowiedzialność nauki II" - moduł: Popularyzacja nauki (2025).
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-4958441c-c422-475c-ae96-418594e4e571
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.