PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

The comparison of the porosity formation in different casted secondary aluminium alloy

Treść / Zawartość
Identyfikatory
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
The porosity formation in secondary aluminium cast alloys are one of the main aspect which can affect the final properties of casts. Whereas these materials are especially used for production the automotive casts such as engine blocks, cylinder head, chassis components and so on, it is need the production of the casts without deleterious defects. The contributions deals with comparison of the porosity formation in secondary AlSi9Cu3 cast alloy when different moulds (the metallic mould and sand mould) for casting were used. The material was gravity casted in the both mould. The differences in microstructure and porosity formation were studied by using light metallography microscopy and image analyser software. The evolution shows that the experimental material casted into the metallic mould had about 98.78% smaller porosity size in comparison to the material casted into the sand mould, therefore it showed better properties.
Rocznik
Tom
Strony
12--19
Opis fizyczny
Bibliogr. 21 poz., rys., tab.
Twórcy
  • University of Žilina, Department of Materials Engineering
autor
  • University of Žilina, Department of Materials Engineering
Bibliografia
  • 1. ANSON J. P., GRUZLESKI J. E. 1999. The Quantitative Discrimination between Shrinkage and Gas Microporosity in Cast Aluminum Alloys Using Spatial Data Analysis. Materials characterization, Vol. 43, pp. 319–335.
  • 2. BANGYIKHAN K. 2005. Effects of Oxide film, Fe-rich phase, Porosity and their Interactions on Tensile Properties of Cast Al-Si-Mg Alloys. PhD thesis. School of Metallurgy and Materials, Faculty of Engineering, University of Birmingham, United Kingdom.
  • 3. BOLIBRUCHOVÁ D., RICHTÁRECH L. 2016. Possibilities of using Al-Si-Mg alloys with higher Fe content for demanding castings. Manufacturing technology, Vol. 16, No. 2, pp. 317-323.
  • 4. CAMPBELL J., HARDING R.A. 1994. Solidification Defects in Castings. TALAT Lecture 3207, EAA - European Aluminium Association.
  • 5. FINTOVA S., KONSTANTOVA V., KONEČNA R., NICOLETTO G. 2008. Experimental study of porosity and fatigue behavior of cast Al–Si alloys. 17th International Metallurgical & Materials Conference, Hradec nad Moravicí, TANGER Ostrava, CD-ROM (no. 54).
  • 6. GONZÁLEZ R., GONZÁLEZ A., TALAMANTES-SILVA J., VALTIERRA S., MERCADO-SOLÍS R.D., GARZA-MONTES-DE-OCA N.F., COLÁS R. 2013. Fatigue of an aluminium cast alloy used in the manufacture of automotive engine blocks. International Journal of Fatigue, Vol. 54, pp. 118–126.
  • 7. LU L., DAHLE A.K. 2005. Iron-rich intermetallic phases and their role in casting defect formation in hypoeutectic Al-Si Alloys. Metallurgical and materials transactions A, Vol. 36A, pp. 819-835.
  • 8. MAHTA M., EMAMY X.C., CAMPBELL L. 2007. Overview of beta Al5FeSi phase in Al-Si alloys. In: Materials Science Research Trends. Editor: Lawrence V. Olivante, Nova Science Publishers, pp. 1-16.
  • 9. MAJOR J.F. 2002. Porosity Control and Fatigue Behavior in A356-T61 Aluminum Alloy. In: AFS Transactions, Vol. 97-94, pp. 901- 906.
  • 10. NOVÝ F., KOPAS P., BOKŮVKA O., SAVIN A. 2016. Fatigue durability of ductile iron in very-high-cycle region. Manufacturing technology, Vol. 16, No. 2, pp. 406-409.
  • 11. PALYGA L., STACHOWICZ M., GRANAT K. 2016. Influence of High-presure-die-casting second stage parameter on structure of AlSi9Cu3(Fe) alloy. Manufacturing technology, Vol. 16, No. 2, pp. 410-416.
  • 12. PUCHER P., BӦTTCHER H., KAUFMANN H., ANTREKOWITSCH H., UGGOWITZER P.J. 2011. Mechanical properties and casting characteristics of the secondary aluminium alloy AlSi9Cu3(Fe) (A226). In: Supplemental Proceedings: Materials Fabrication, properties, characterization, and modelling. The mminerals, metals & materials soviety, Vol. 2, pp. 237-244.
  • 13. ROSSO M. 2005. The influence of casting process on quality and performances on Al based automotive components. In: Proceeding of 13th International scientific conference on Achievements in mechanical and materials engineering, pp. 547-550. Poland, Gliwice.
  • 14. SKOČOVSKÝ P., BENKO P., VAŠKO A. 2000. Quantitative appreciation of structure and fracture surface of casting materials. In: Proccedings of Advanced manufacturing and repair technologies in vehicle industry, pp. 51-55 Zielona Góra - Łagów, Poland.
  • 15. STN EN ISO 6892-1:2010 (42 0310). Metallic materials. Tensile testing. Part 1: Method of test at ambient temperature.
  • 16. STN EN ISO 6506-1:2015 (42 0371). Metallic materials. Brinell hardness. Part 1: Test method.
  • 17. ŠVECOVÁ I., TILLOVÁ E., KUCHARIKOVÁ L. 2017. Structural analysis of iron based intermetallic phases in secondary AlSi6Cu4 cast alloy. Production Engineering Archives (in press).
  • 18. TILLOVÁ E., HURTALOVÁ L., CHALUPOVÁ M., ĎURINÍKOVÁ E. 2010. Quality control of secondary (recycled) Al-Si cast alloy. In: Toyotarity - Structure of control elements importance: monography. (Yurij V. Makovetsky, (Ed.)), pp. 48-63. Dnipropetrovsk.
  • 19. ŤAVODOVÁ M., KALINCOVÁ D. 2016. Improving the Quality of Castings Using Thermovision. Manufacturing Technology, Vol. 16, No. 1, pp. 268-273.
  • 20. YU J. 2016. Formation of Intermetallic Phases in Al-10Si-0.3Fe based Alloys. PhD thesis. December, Berlin, 134.
  • 21. ZUO Y., LI H., XIA M., JIANG B., SCAMANS G.M., FAN Z. 2011. Refining grain structure and porosity of an aluminium alloy with intensive melt shearing. Scripta Materialia, Vol. 64, pp. 209–212.
Uwagi
Opracowanie rekordu w ramach umowy 509/P-DUN/2018 ze środków MNiSW przeznaczonych na działalność upowszechniającą naukę (2018).
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-49553395-20c9-4512-ab07-a48916b22501
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.