PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

Automated diagnosis of diabetic retinopathy enabled by optimized thresholding-based blood vessel segmentation and hybrid classifier

Identyfikatory
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
Objectives: The focus of this paper is to introduce an automated early Diabetic Retinopathy (DR) detection scheme from colour fundus images through enhanced segmentation and classification strategies by analyzing blood vessels. Methods: The occurrence of DR is increasing from the past years, impacting the eyes due to a sudden rise in the glucose level of blood. All over the world, half of the people who are under age 70 are severely suffered from diabetes. The patients who are affected by DR will lose their vision during the absence of early recognition of DR and appropriate treatment. To decrease the growth and occurrence of loss of vision, the early detection and timely treatment of DR are desirable. At present, deep learning models have presented better performance using retinal images for DR detection. In this work, the input retinal fundus images are initially subjected to pre-processing that undergoes contrast enhancement by Contrast Limited Adaptive Histogram Equalization (CLAHE) and average filtering. Further, the optimized binary thresholding-based segmentation is done for blood vessel segmentation. For the segmented image, Tri-level Discrete Level Decomposition (Tri-DWT) is performed to decompose it. In the feature extraction phase, Local Binary Pattern (LBP), and Gray-Level Co-occurrence Matrices (GLCMs) are extracted. Next, the classification of images is done through the combination of two algorithms, one is Neural Network (NN), and the other Convolutional Neural Network (CNN). The extracted features are subjected to NN, and the triDWT-based segmented image is subjected to CNN. Both the segmentation and classification phases are enhanced by the improved meta-heuristic algorithm called Fitness Ratebased Crow Search Algorithm (FR-CSA), in which few parameters are optimized for attaining maximum detection accuracy. Results: The proposed DR detection model was implemented in MATLAB 2018a, and the analysis was done using three datasets, HRF, Messidor, and DIARETDB. Conclusions: The developed FR-CSA algorithm has the best detection accuracy in diagnosing DR.
Rocznik
Strony
9--23
Opis fizyczny
Bibliogr. 37 poz., rys., tab.
Twórcy
  • Research Scholar, Department of Electronics & Telecommunication Engineering, MIT College of Engineering, Dr. Babasaheb Ambedkar Marathwada University, Aurangabad, India
  • Department of Electronics Engineering, Puranmal Lahoti Govt. Polytechnic College, MSBTE, Latur, Mumbai, India
  • Department of Electronics & Telecommunication Engineering, MIT College of Engineering, Dr. Babasaheb Ambedkar Marathwada University, Aurangabad, India
  • Department of Electronics & Telecommunication Engineering, MIT College of Engineering, Dr. Babasaheb Ambedkar Marathwada University, Aurangabad, India
Bibliografia
  • 1. Zeng X, Chen H, Luo Y, Ye W. Automated diabetic retinopathy detection based on binocular siamese-like convolutional neural network. IEEE Access 2019;7:30744-53.
  • 2. Guariguata L, Whiting DR, Hambleton I, Beagley J, Linnenkamp U, Shaw JE. Global estimates of diabetes prevalence for 2013 and projections for 2035. Diabetes Res Clin Pract 2014;103: 137-49.
  • 3. Gargeya R, Leng T. Automated identication of diabetic retinopathy using deep learning. Ophthalmology 2017;124:962-9.
  • 4. González-Gonzalo C, Sánchez-Gutiérrez V, Hernández-Martínez P, Contreras I, Lechanteur YT, Domanian A, et al. Evaluation of a deep learning system for the joint automated detection of diabetic retinopathy and age-related macular degeneration. Acta Ophthalmologica. Hoboken: Wiley; 2020, vol. 98:368-77.
  • 5. Quellec G, Charrière K, Boudi Y, Cochener B, Lamard M. Deep image mining for diabetic retinopathy screening. Med Image Anal 2017;39:178-93.
  • 6. Amin J, Sharif M, Yasmin M, Ali H, Fernandes SL. A method for the detection and classification of diabetic retinopathy using structural predictors of bright lesions. J Comput Sci 2017;19: 153-64.
  • 7. Abràmoff MD, Lavin PT, Birch M, Shah N, Folk JC. Pivotal trial of an autonomous AI-based diagnostic system for detection of diabetic retinopathy in primary care. NPJ Digit Med 2018;1:39.
  • 8. Qummar S, Khan FG, Shah S, Khan A, Shamshirband S, Rehman ZU, et al. A deep learning ensemble approach for diabetic retinopathy detection. IEEE Access 2019;7:150530-9.
  • 9. He L, Li J, Plaza A, Li Y. Discriminative low-rank gabor filtering for spectra-spatial hyperspectral image classification. IEEE Trans Geosci Rem Sens 2017;55:1381-95.
  • 10. Hameed MA, Hassaballah M, Aly S, Awad AI. An adaptive image steganography method based on histogram of oriented gradient and PVD-LSB techniques. IEEE Access 2019;7:185189-204.
  • 11. Guo Z, Wang X, Zhou J, You J. Robust texture image representation by scale selective local binary patterns. IEEE Trans Image Process 2016;25:687-99.
  • 12. Xiang Y, Wang F, You H. OS-SIFT: A robust SIFT-like algorithm for high-resolution optical-to-SAR image registration in suburban areas. IEEE Trans Geosci Rem Sens 2018;56:3078-90.
  • 13. Mateen M, Wen J, Hassan M, Nasrullah N, Sun S, Hayat S. Automatic detection of diabetic retinopathy: a review on datasets, methods and evaluation metrics. IEEE Access 2020;8:48784-811.
  • 14. Dutta S, Manideep BC, Basha SM, Caytiles RD, Iyengar NC. Classification of diabetic retinopathy images by using deep learning models. Int J Grid Distrib Comput 2018; 11:89-106.
  • 15. Nida N, Irtaza A, Javed A, Yousaf MH, Mahmood MT. Melanoma lesion detection and segmentation using deep region based convolutional neural network and fuzzy c-means clustering. Int J Med Inform 2019;124:37-48.
  • 16. Flaxman SR, Bourne RR, Resnikoff S, Ackland P, Braithwaite T, Cicinelli MV, et al. Global causes of blindness and distance vision impairment 1990–2020: a systematic review and meta-analysis. Lancet Glob Health 2017;5:e1221-34.
  • 17. Quellec G, Lamard M, Erginay A, Chabouis A, Massin P, Cochener B, et al. Automatic detection of referral patients due to retinal pathologies through data mining. Med Image Anal 2016;29:47-64.
  • 18. Dietterich TG, Lathrop RH, Lozano-Pérez T. Solving the multiple instance problem with axis-parallel rectangles. Artif Intell 1997; 89:31-71.
  • 19. Quellec G, Lamard M, Abràmoff M.D. A multiple-instance learning framework for diabetic retinopathy screening. Med Image Anal 2012;16:1228-40.
  • 20. Costa P, Galdran A, Smailagic A, Campilho A. A weaklysupervised framework for interpretable diabetic retinopathy detection on retinal images. IEEE Access 2018;6:18747-58.
  • 21. Kar SS, Maity SP. Automatic detection of retinal lesions for screening of diabetic retinopathy. IEEE (Inst Electr Electron Eng) Trans Biomed Eng 2018;65:608-18.
  • 22. Zhou L, Zhao Y, Yang J, Yu Q, Xu X. Deep multiple instance learning for automatic detection of diabetic retinopathy in retinal images. IET Image Process 2018;12:563-71.
  • 23. Amin J, Sharif M, Rehman A, Raza M, Mufti MR. Diabetic retinopathy detection and classification using hybrid feature set, Special Section. Light Sheet Fluoresc Illum Microsc 2018;81:990-6.
  • 24. Xu J, Zhang X, Chen H, Li J, Zhang J, Shao L, et al. Automatic analysis of microaneurysms turnover to diagnose the progression of diabetic retinopathy. IEEE Access 2018;6: 9632-42.
  • 25. Roshini TV, Ravi RV, Mathew AR, Kadan AB, Subbian PS. Automatic diagnosis of diabetic retinopathy with the aid of adaptive average filtering with optimized deep convolutional neural network. Int J Imag Syst Technol 2020;30:1173-93.
  • 26. Nosrati M, Karimi R. Detection of circular shapes from impulse noisy images using median and laplacian filter and Circular Hough Transform. In: 2011 8th International Conference on Electrical Engineering, Computing Science and Automatic Control. IEEE: Merida City; 2011:1-5 p.
  • 27. Liao S, Law MWK, Chung ACS. Dominant local binary patterns for texture classification. IEEE Trans Image Process 2009;18: 1107-18.
  • 28. Malegori C, Franzetti L, Guidetti R, Casiraghi E, Rossi R. GLCM, an image analysis technique for early detection of biofilm. J Food Eng 2016;185:48-55.
  • 29. Tabassum F, Islam I, Amin MR. Comparison of filter banks of DWT in recovery of image using one dimensional signal vector. J King Saud Univ Comput Inform Sci 2019;1-10. https://doi.org/10.1016/j.jksuci.2019.03.005.
  • 30. Askarzadeh A. A novel metaheuristic method for solving constrained engineering optimization problems: crow search algorithm. Comput Struct 2016;169:1-12.
  • 31. Fernández-Navarro F, Carbonero-Ruz M, Alonso DB, TorresJiménez M. Global sensitivity estimates for neural network classifiers. IEEE Trans Neural Netw Learn Syst 2017;28: 2592-604.
  • 32. Namatēvs I. Deep convolutional neural networks: structure, feature extraction and training. Inf Technol Manag Sci 2017;20: 40-7.
  • 33. Pedersen MEH, Chipperfield AJ. Simplifying particle swarm optimization. Appl Soft Comput 2010;10:618-28.
  • 34. Mirjalili S, Mirjalili SM, Lewis A. Grey wolf optimizer. Adv Eng Software 2014;69:46-61.
  • 35. Mirjalili S, Lewis A. The whale optimization algorithm. Adv Eng Software 2016;95:51-67.
  • 36. Chen Y, Hu X, Fan W, Shen L, Zhang Z, Liu X, et al. Fast density peak clustering for large scale data based on KNN. Knowl Base Syst 2019;187:1-7.
  • 37. Yu S, Tan KK, Sng BL, Shengjin, Sia ATH. Lumbar ultrasound image feature extraction and classification with support vector machine. Ultrasound Med Biol 2015;41:2677-89.
Uwagi
Opracowanie rekordu ze środków MNiSW, umowa Nr 461252 w ramach programu "Społeczna odpowiedzialność nauki" - moduł: Popularyzacja nauki i promocja sportu (2021).
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-495367a8-113d-4e24-bbd4-3de347d0be4e
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.