PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

Extremes of chi-square processes with trend

Autorzy
Wybrane pełne teksty z tego czasopisma
Identyfikatory
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
This paper studies the supremum of chi-square processes with trend over a threshold-dependent-time horizon. Under the assumptions that the chi-square process is generated from a centered self-similar Gaussian process and the trend function is modeled by a polynomial function, we obtain the exact tail asymptotics of the supremum of the chi-square proces with trend. These results are of interest in applications in engineering, insurance, queueing and statistics, etc. Some possible extensions of our results are also discussed.
Rocznik
Strony
1--20
Opis fizyczny
Bibliogr. 36 poz.
Twórcy
autor
  • School of Mathematical Sciences and LPMC, Nankai University
  • Department of Actuarial Science, University of Lausanne, Quartier UNIL-Dorigny, Bâtiment Extranef, CH-1015 Lausanne, Switzerland
autor
  • Department of Actuarial Science, University of Lausanne, Quartier UNIL-Dorigny, Bâtiment Extranef, CH-1015 Lausanne, Switzerland
Bibliografia
  • [1] R. J. Adler and J. E. Taylor, Random Fields and Geometry, Springer Monogr. Math., Springer, New York 2007.
  • [2] J. M. P. Albin, On extremal theory for stationary processes, Ann. Probab. 18 (1) (1990), pp. 92-128.
  • [3] S. Asmussen and H. Albrecher, Ruin Probabilities, second edition, Adv. Ser. Stat. Sci. Appl. Probab., Vol. 14, World Scientific, Hackensack, NJ, 2010.
  • [4] S. M. Berman, Sojourns and extremes of stationary processes, Ann. Probab. 10 (1) (1982), pp. 1-46.
  • [5] K. Dębicki, Ruin probability for Gaussian integrated processes, Stochastic Process. Appl. 98 (1) (2002), pp. 151-174.
  • [6] K. Dębicki, E. Hashorva, and L. Ji, Tail asymptotics of supremum of certain Gaussian processes over threshold dependent random intervals, Extremes 17 (3) (2014), pp. 411-429.
  • [7] K. Dębicki, E. Hashorva, and L. Ji, Gaussian risk models with financial constraints, Scand. Actuar. J. (6) (2015), pp. 469-481.
  • [8] K. Dębicki, E. Hashorva, and L. Ji, Extremes of a class of non-homogeneous Gaussian random fields, Ann. Probab. 44 (2) (2016), pp. 984-1012.
  • [9] K. Dębicki and M. Mandjes, Exact overflow asymptotics for queues with many Gaussian inputs, J. Appl. Probab. 40 (3) (2003), pp. 704-720.
  • [10] K. Dębicki and G. Sikora, Finite time asymptotics of fluid and ruin models: multiplexed fractional Brownian motions case, Appl. Math. (Warsaw) 38 (1) (2011), pp. 107-116.
  • [11] A. B. Dieker, Extremes of Gaussian processes over an infinite horizon, Stochastic Process. Appl. 115 (2) (2005), pp. 207-248.
  • [12] A. B. Dieker and B. Yakir, On asymptotic constants in the theory of Gaussian processes, Bernoulli 20 (3) (2014), pp. 1600-1619.
  • [13] L. Dümbgen and A. Wellner, Confidence bands for distribution functions: A new look at the law of the iterated logarithm, preprint, 2014.
  • [14] P. Embrechts and M. Maejima, Selfsimilar Processes, Princeton Ser. Appl. Math., Princeton University Press, Princeton, NJ, 2002.
  • [15] E. Hashorva and L. Ji, Approximation of passage times of γ-reflected processes with fBm input, J. Appl. Probab. 51 (3) (2014), pp. 713-726.
  • [16] E. Hashorva and L. Ji, Piterbarg theorem for chi-processes with trend, Extremes 18 (1) (2015), pp. 37-64.
  • [17] J. Hüsler and V. I. Piterbarg, Extremes of a certain class of Gaussian processes, Stochastic Process. Appl. 83 (2) (1999), pp. 257-271.
  • [18] J. Hüsler and V. I. Piterbarg, A limit theorem for the time of ruin in a Gaussian ruin problem, Stochastic Process. Appl. 118 (11) (2008), pp. 2014-2021.
  • [19] D. Jarušková, Detecting non-simultaneous changes in means of vectors, Test 24 (4) (2015).
  • [20] D. Jarušková and V. I. Piterbarg, Log-likelihood ratio test for detecting transient change, Statist. Probab. Lett. 81 (5) (2011), pp. 552-559.
  • [21] C. Klüppelberg and C. Kühn, Fractional Brownian motion as a weak limit of Poisson shot noise processes with applications to finance, Stochastic Process. Appl. 113 (2) (2004), pp. 333-351.
  • [22] D. A. Korshunov, V. I. Piterbarg, and E. Hashorva On the extreme values of Gaussian chaos, Dokl. Akad. Nauk 452 (5) (2013), pp. 483-485.
  • [23] S. Kuriki, Y. Harushima, H. Fujisawa, and N. Kurata, Approximate tail probabilities of the maximum of a chi-square field on multi-dimensional lattice points and their applications to detection of loci interactions, Ann. Inst. Statist. Math. 66 (2014), pp. 725-757.
  • [24] M. R. Leadbetter, G. Lindgren, and H. Rootzén, Extremes and Related Properties of Random Sequences and Processes, Springer, 1983.
  • [25] G. Lindgren, Extreme values and crossings for the X2-process and other functions of multidimensional Gaussian processes, with reliability applications, Adv. in Appl. Probab. 12 (3) (1980), pp. 746-774.
  • [26] P. Liu and L. Ji, Extremes of chi-square processes with trend, arXiv:1407.6501, 2014.
  • [27] M. M. Meerschaert, W. Wang, and Y. Xiao, Fernique-type inequalities and moduli of continuity for anisotropic Gaussian random fields, Trans. Amer. Math. Soc. 365 (2013), pp. 1081-1107.
  • [28] I. Norros, A storage model with self-similar input, Queueing Syst. 16 (1994), pp. 387-396.
  • [29] A. G. Pakes, Convolution equivalence and infinite divisibility, J. Appl. Probab. 41 (2) (2004), pp. 407-424.
  • [30] V. I. Piterbarg, High excursions for nonstationary generalized chi-square processes, Stochastic Process. Appl. 53 (2) (1994), pp. 307-337.
  • [31] V. I. Piterbarg, Asymptotic methods in the theory of Gaussian processes and fields, Transl. Math. Monogr., Vol. 148, American Mathematical Society, Providence, RI, 1996.
  • [32] V. I. Piterbarg and V. P. Prisjažnjuk, Asymptotic behavior of the probability of a large excursion for a nonstationary Gaussian process, Teor. Veroyatnost. Mat. Statist. 18 (1978), pp. 121-134.
  • [33] C. Qualls and H. Watanabe, Asymptotic properties of Gaussian random fields, Trans. Amer. Math. Soc. 177 (1973), pp. 155-171.
  • [34] T. Rolski, H. Schmidli, V. Schmidt, and J. L. Teugels, Stochastic Processes for Insurance and Finance, Wiley Ser. Probab. Stat., Wiley, Chichester 1999.
  • [35] Z. Tan and E. Hashorva, Exact asymptotics and limit theorems for supremum of stationary X-processes over a random interval, Stochastic Process. Appl. 123 (8) (2013), pp. 2983-2998.
  • [36] C. A. Tudor and Y. Xiao, Sample path properties of bifractional Brownian motion, Bernoulli 13 (4) (2007), pp. 1023-1057.
Uwagi
Opracowanie rekordu w ramach umowy 509/P-DUN/2018 ze środków MNiSW przeznaczonych na działalność upowszechniającą naukę (2019).
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-4952eed7-6657-4388-b9d4-baa3244fa331
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.