Tytuł artykułu
Treść / Zawartość
Pełne teksty:
Identyfikatory
Warianty tytułu
Języki publikacji
Abstrakty
In this paper, we obtain some closed form series solutions for the time fractional diffusion-wave equation (TFDWE) with the generalized time-fractional Caputo derivative (GTFCD) associated with a source term in polar coordinates. These solutions are found using generalized Laplace and Hankel transforms. We obtained the closed form series solutions in the form of the Polygamma function. The effect of the fractional order derivative on the diffusion-wave variable is illustrated graphically.
Rocznik
Tom
Strony
5--14
Opis fizyczny
Bibliogr. 32 poz., rys.
Twórcy
autor
- Department of Mathematics and Engineering Physics, Engineering Faculty Mansoura University, Mansoura, Egypt
autor
- Department of Mathematics and Engineering Physics, Engineering Faculty Mansoura University, Mansoura, Egypt
- Department of Mathematics, Faculty of Science, New Mansoura University New Mansoura City, Egypt
autor
- Department of Mathematics and Engineering Physics, Engineering Faculty Mansoura University, Mansoura, Egypt
autor
- Department of Mathematics and Engineering Physics, Engineering Faculty Mansoura University, Mansoura, Egypt
- Department of Mathematics, Faculty of Science, New Mansoura University New Mansoura City, Egypt
Bibliografia
- [1] Liu, J.G., Zhang, Y.F., & Wang, J.J. (2023). Investigation of the time fractional generalized (2+1)-dimensional Zakharov-Kuznetsov equation with single-power law nonlinearity. Fractals. DOI: 10.1142/S0218348X23500330.
- [2] Liu, J.G., Yang, X.J., Geng, L.L., & Yu, X.J. (2022). On fractional symmetry group scheme to the higher-dimensional space and time fractional dissipative Burgers equation. International Journal of Geometric Methods in Modern Physics, 19(11), 2250173.
- [3] Berkowitz, B., Scher, H., & Silliman, S.E. (2000). Anomalous transport in laboratory-scale, heterogeneous porous media. Water Resources Research, 36(1), 149-158.
- [4] Metzler, R., & Klafter, J. (2000). Subdiffusive transport close to thermal equilibrium: From the Langevin equation to fractional diffusion. Physical Review E, 61(6 a), 6308-6311.
- [5] Nigmatullin, R.R. (1986). The realization of the generalized transfer equation in a medium with fractal geometry. Physica Status Solidi B, 133, 425-430.
- [6] Zhang, Y., Wei, T., & Zhang, Y.X. (2021). Simultaneous inversion of two initial values for a time-fractional diffusion-wave equation. Numer Methods for Partial Differential Equation, 37, 1, 24-43.
- [7] Ali, U., Iqbal, A., Sohail, M., Abdullah, F.A., & Khan, Z. (2022). Compact implicite difference approximation for time-fractional diffusion-wave equation. Alexandria Engineering Journal, 61(5), 4119-4126.
- [8] Maimardi, F. (2022). Fractional Calculus and Waves in Linear Viscoelasticity, 2nd Edition. World Scientific.
- [9] Pilipovic, S., Atanackovic. T.M., Stankovic, B., & Zorica, D. (2014). Fractional Calculus with Applications in Mechanics: Vibrations and Diffusion Processes. John Wiley & Sons.
- [10] Pskhu, A., & Rekhviashvili, S. (2020). Fractional diffusion-wave equation with application in electrodynamics. Mathematics, 8(11), 2086.
- [11] Mainardi, F. (1996). Fractional relaxation-oscillation and fractional diffusion-wave phenomena. Chaos, Solitons & Fractals, 7(9), 1461-1477.
- [12] Mainardi, F., Luchko, Y., & Pagnini, G. (2001). The fundamental solution of the space-time fractional diffusion equation, Fractional Calculus and Applied Analysis, 4(2), 153-192.
- [13] Hanyga, A. (2002). Multidimensional solutions of time-fractional diffusion-wave equations. The Royal Society of London. Proceedings. Series A, 458, 933-957.
- [14] Agrawal, O.P. (2002). Solution for a fractional diffusion-wave equation defined in a bounded domain. Nonlinear Dynamics, 29(1), 145-155.
- [15] Agrawal, O.P. (2012). Some generalized fractional calculus operators and their applications in integral equations. Fractional Calculus and Applied Analysis, 15(4), 700-711.
- [16] Povstenko, Y. (2014). Solutions to the fractional diffusion-wave equation in a wedge. Fractional Calculus and Applied Analysis, 17(1), 122-135.
- [17] Dorrego, G.A. (2016). The Mittag-Leffler function and its application to the ultra-hyperbolic time-fractional diffusion-wave equation. Integral Transforms and Special Functions, 27(5), 392-404.
- [18] Datsko, B., Podlubny, I., & Povstenko, Y. (2019). Time-fractional diffusion-wave equation with mass absorption in a sphere under harmonic impact. Mathematics, 7(5), 433.
- [19] Povstenko, Y. (2021). Some applications of the wright function in continuum physics: a survey. Mathematics, 9(2), 198.
- [20] Liu, J.G., Yang, X.J., Feng, Y.Y., & Geng, L.L. (2023). A new fractional derivative for solving time fractional diffusion wave equation. Mathematical Methods in the Applied Sciences, 46(1), 267-272.
- [21] Verma, P., & Kumar, M. (2022). Exact solution with existence and uniqueness conditions for multi-dimensional time-space tempered fractional diffusion-wave equation. Engineering with Computers, 38, 271-281.
- [22] Diethelm K., Kiryakova V., Luchko, Y., Machado, J.A., & Tarasov, V.E. (2022). Trends, directions for further research, and some open problems of fractional calculus. Nonlinear Dynamics, 107, 3245-3270.
- [23] Jarad, F., & Abdeljawad, T. (2020). Generalized fractional derivatives and Laplace transform. Discrete & Continuous Dynamical Systems-S, 13(3), 709-722.
- [24] Povstenko, Y.Z. (2011). Solutions to time-fractional diffusion-wave equation in cylindrical coordinates. Advances in Difference Equations, 930297.
- [25] Munson, B.R., Okiishi, T.H., Huebsch, W.W., & Rothmayer, A.P. (2013). Fluid Mechanics. Singapore: Wiley.
- [26] Povstenko, Y.Z. (2015). Linear Fractional Diffusion-wave Equation for Scientists and Engineers. Springer International Publishing.
- [27] Yang, X.J. (2019). General Fractional Derivatives: Theory, Methods, and Applications. CRC Press.
- [28] Yang, X.J., Gao, F., & Yang, J. (2020). General Fractional Derivatives with Applications in Viscoelasticity. Academic Press.
- [29] Yang, X.J. (2021). Theory and Applications of Special Functions for Scientists and Engineers. Singapore: Springer.
- [30] Debnath, L., & Bhatta, L. (2016). Integral Transforms and their Applications. Chapman and Hall/CRC.
- [31] Bonnar, J. (2014). The Gamma Function. Applied Research Press.
- [32] Prudnikov, A.P., Brychkov, Y.A., & Marichev, O.I. (1988). Integrals and Series, Vol. 5. Inverse Laplace Transforms. Gordon and Breach Science Publishers.
Uwagi
Opracowanie rekordu ze środków MEiN, umowa nr SONP/SP/546092/2022 w ramach programu "Społeczna odpowiedzialność nauki" - moduł: Popularyzacja nauki i promocja sportu (2022-2023).
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-49517263-c1d4-4010-ba9f-b7a79df8e024