PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

Medical image measurement and characterization: extracting mechanical and thermal stresses for surgery

Treść / Zawartość
Identyfikatory
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
Whatever the type of surgery related to inner organs, traditional or robotic, the contact with them during surgery is a key moment for pursuing the intervention. Contacts by means of surgery instruments namely scalpels, staples, clamps, graspers, etc. are decisive moments. False, and erroneous touching and manoeuvring of organs operated on can cause irreversible damage as regard morphological aspects (outer impact) and physiological aspects (inner impact). The topic is a great challenge in the effort to measure and characterize damages. In general, electrical instruments for surgery employ the following technologies: ultrasound, radiofrequency (monopolar, and bipolar), and laser. They all result in thermal damages difficult to evaluate. The article proposes a method for a pre-screening of organ features during robotic surgery sessions by pointing out mechanical and thermal stresses. A dedicated modelling has been developed based on experimental activities during surgery session. The idea is to model tissue behaviour from real images to help surgeons to be aware of handling during surgery. This is the first step for generalization by considering the type of organ. The measurement acquisitions have been performed by means of an advanced external camera located over the surgery quadrant. The modelling and testing have been carried out on kidneys. The modelling, carried out through Comsol Multiphysics, is based on the bioheat approach. A further comparative technique has been implemented. It is based on computer vision for robotics. The findings of human tissue behavior exhibit reliable results.
Rocznik
Strony
3--21
Opis fizyczny
Bibliogr. 39 poz., rys., tab., wzory
Twórcy
  • University of Salento, Department of Innovation Engineering, Via Monteroni sn, 73100 Lecce, Italy
  • University of Salerno, Department of Industrial Engineering, Via Giovanni Paolo II n.132, 84084 Fisciano, Italy
  • University of Salerno, Department of Industrial Engineering, Via Giovanni Paolo II n.132, 84084 Fisciano, Italy
  • Nanyang Technological University, School of Computer Science and Engineering, 50 Nangyang Ave, Singapore 639798
  • K L University, Department of Electronics & Communication Engineering, Green Fields, Vaddeswaram, Guntur-522502, India
  • Asl Reggio Calabria, Hospital “Bianchi-Melacrino-Morelli”, Via Giuseppe Melacrino n.21, 89124 Reggio Calabria, Italy
Bibliografia
  • [1] Lay-Ekuakille, A., Visconti, P., de Fazio, R., & Veneziano, D. (2019). Quasi-real time acquisition and processing for biomedical IR and conventional imaging in surgery applications, Journal of Instrumentation, 14(3). https://doi.org/10.1088/1748-0221/14/03/P03011
  • [2] Cheng, L., & Hannaford, B. (2016). Evaluation of liver tissue damage and grasp stability using finite element analysis. Computer Methods in Biomechanics and Biomedical Engineering,19(1), 31-40. https://doi.org/10.1080/10255842.2014.981166
  • [3] Cartmill, J. A., Shakeshaft, A. J., Walsh, W. R., & Martin, C. J. (1999). High pressures are generated at the tip of laparoscopic graspers. Australian and New Zealand Journal of Surgery, 69(2), 127-130. https://doi.org/10.1046/j.1440-1622.1999.01496.x
  • [4] Van der Voort, M., Heijnsdijk, E. A. M., & Gouma, D. J. (2004). Bowel injury as a complication of laparoscopy. British Journal of Surgery, 91(9), 1253-1258. https://doi.org/10.1002/bjs.4716
  • [5] Tang, B., Hanna, G. B., Joice, P., & Cuschieri, A. (2004). Identification and categorization of technical errors by Observational Clinical Human Reliability Assessment (OCHRA) during laparoscopic cholecystectomy, Archives of Surgery, 139(6), 1215-1230. https://doi.org/10.1001/archsurg.139.11.1215
  • [6] Dargahi, J., Najarian, S., & Najarian, K. (2005). Development and three-dimensional modelling of a biological-tissue grasper tool equipped with a tactile sensor, Canadian Journal of Electrical and Computer Engineering, 30(3), 225-230. https://doi.org/10.1109/CJECE.2005.1541755
  • [7] De, S., Rosen, J., Dagan, A., Hannaford, B., Swanson, P., & Sinanan, M. (2007). Assessment of Tissue Damage due to Mechanical Stresses, The International Journal of Robotics Research., 26(6), 1159-1171. https://doi.org/10.1177/0278364907082847
  • [8] Bicchi, A., Canepa, G., De Rossi, D., Iacconi, P., & Scillingo, E. P. (1996, April). A sensor-based minimally invasive surgery tool for detecting tissutal elastic properties (003) 5323219. Proceedings of IEEE International Conference on Robotics and Automation, USA, 1, 884-888. https://doi.org/10.1109/ROBOT.1996.503884
  • [9] Heijnsdijk, E. A. M., De Visser, H., Dankelman, J., & Gouma, D. J. (2004). Slip and damage properties of jaws of laparoscopic graspers. Surgical Endoscopy and Other Interventional Techniques, 18(5), 974-979. https://doi.org/10.1007/s00464-003-9153-2
  • [10] Lay-Ekuakille, A., Vergallo, P., Jabłoński, I., Casciaro, S., & Conversano, F. (2016). Measuring Lung Abnormalities in Images-based CT. International Journal on Smart Sensing and Intelligent Systems, 9(2), 1156-1179. https://doi.org/10.21307/ijssis-2017-912
  • [11] Gómez-González, M., Latorre, E., Arroyo, M., & Trepat, X. (2020). Measuring mechanical stress in living tissues. Nature Reviews Physics 2, 300-317. https://doi.org/10.1038/s42254-020-0184-6
  • [12] Fung, Y. C. (1993). Biomechanics: Mechanical properties of living tissues. Springer. https://doi.org/10.1007/978-1-4757-2257-4
  • [13] Oates, A. C., Gorfinkiel, N., González-Gaitán, M., & Heisenberg, C. P. (2009). Quantitative approaches in developmental biology. Nature Reviews Genetics, 10, 517-530. https://doi.org/10.1038/nrg2548
  • [14] Sugimura, K., Lenne, P. F., & Graner, F. (2016). Measuring forces and stresses in situ in living tissues. Development, 143, 186-196. https://doi.org/10.1242/dev.119776
  • [15] Addae-Mensah, K. A., & Wikswo, J. P. (2008). Measurement techniques for cellular biomechanics in vitro. Experimental Biology and Medicine, 233, 792-809. https://doi.org/10.3181/0710-MR-278
  • [16] Choi, D. K., & Koo, D. (2017). A study on real-time stress calculation of soft tissues using digital image techniques, Journal of Biomechanical Science and Engineering, 12(1), 2-13. https://doi.org/10.1299/jbse.16-00607
  • [17] Chiffi, C., & Lay-Ekuakille, A. (2016). Physiotherapeutic Movements by Advanced Robotic Beds: Perspectives in Triggering Nanodrugs. 2016 Nanotechnology for Instrumentation and Measurement (NANOfIM), Germany, 5-16. https://doi.org/10.1109/NANOFIM.2016.8521420
  • [18] Harvey, L. A. (2016). Physiotherapy rehabilitation for people with spinal cord injuries. Journal of Physiotherapy, 62(1), 4-11. https://doi.org/10.1016/j.jphys.2015.11.004
  • [19] Pooli, A., Brush, T., Belle, J. D., & LaGrange, C. A. (2017). Delayed severe anaphylactoid reaction following retrograde pyelogram: A case report. SAGE Open Medical Case Reports, 5, 2050313X17745212. https://doi.org/10.1177/2050313X17745212
  • [20] Ritter, M., Rassweiler, M. C., & Michel, M. S. (2015). The Uro Dyna-CT enables three-dimensional planned laser-guided complex punctures. European Urology, 68(4), 880-884. https://doi.org/10.1016/j.eururo.2015.07.005
  • [21] Bhateja, V., Patel, H., Krishn, A., Sahu, A., & Lay-Ekuakille, A. (2015). Multimodal medical image sensor fusion framework using cascade of wavelet and contourlet transform domains. IEEE Sensors Journal, 15(11), 6783-6790. https://doi.org/10.1109/JSEN.2015.2465935
  • [22] Giorgio, G. A., Ragosta, M., & Telesca, V. (2017). Application of a multivariate statistical index on series of weather measurements at local scale. Measurement, 112, 61-66. https://doi.org/10.1016/j.measurement.2017.08.005
  • [23] Lin, H., Si, J., & Abousleman, G. P. (2007, April). Region-of-interest detection and its application to image segmentation and compression. 2007 International Conference on Integration of Knowledge Intensive Multi-Agent Systems, USA, 306-311. https://doi.org/10.1109/KIMAS.2007.369827
  • [24] Prince, J. L., & Willsky, A. S. (1993). Hierarchical Reconstruction using Geometry and Sinogram Restoration”, IEEE Transactions on Image Processing, 2(3), 401-416. https://doi.org/10.1109/83.236529
  • [25] Chen, X., Wang, R., Cao, Y., Yu, W., & Feng, J. (2012). A novel evaluation method based on entropy for image segmentation. Procedia Engineering, 29, 3959-3965. https://doi.org/10.1016/j.proeng.2012.01.602
  • [26] Sparavigna, A. C. (2019). Entropy in Image Analysis. Entropy, 21(4), 1-4. https://doi.org/10.3390/e21050502
  • [27] Lanzavecchia, S., Tosoni, L., & Bellon, P. L. (1996). Fast sinogram computation and the sinogram-based alignment of images. Computer applications in the biosciences: CABIOS, 12(5), 531-537. https://doi.org/10.1093/bioinformatics/12.6.531
  • [28] Das, K. & Mishra, S. C. (2014). Study of thermal behavior of a biological tissue: An equivalence of Pennes bioheat equation and Wulff continuum model. Journal of Thermal Biology, 45, 103-109. https://doi.org/10.1016/j.jtherbio.2014.08.007
  • [29] Tzou, D. Y., Beraun, J. E., & Chen, J. K. (2002). Ultrafast deformation in femtosecond laser heating. Journal of Heat Transfer, 124(2), 284-292. https://doi.org/10.1115/1.1447934
  • [30] Chandler, J. H., Mushtaq, F., Moxley-Wyles, B., West, N. P., Taylor, G. W., & Culmer, P. R. (2017). Real-time assessment of mechanical tissue trauma in surgery. IEEE Transactions on Biomedical Engineering, 64(9), 2384-2393. https://doi.org/10.1109/TBME.2017.2664668
  • [31] Juch, T. (2014, August 2). Bioheat Transfer, Heat Flux [Online forum post]. Comsol. https://www.comsol.com/forum/thread/46501/bioheat-transfer-heat-flux
  • [32] COMSOL. Application Gallery. Retrieved March 9, 2020, from https://www.comsol.com/models/structural-mechanics-module
  • [33] Intuitive. Kidney Surgery. Learn about kidney cancer surgery and understand your options. Retrieved March 22, 2020, from https://www.davincisurgery.com/procedures/urology-surgery/kidney-surgery
  • [34] Yifeng, P., Zehua, Z., Guohao, D., Tiqiao, X., Hongjie, X., & Peiping, Z. (2013). Experimental investigation of mouse kidney aging with SR PCI technology. Journal of Instrumentation, 8, C08004. https://doi.org/10.1088/1748-0221/8/08/C08004
  • [35] Scott, R. G., Navarro Leija, O. S., Devietti, J., & Newton, R. R. (2017). Monadic composition for deterministic, parallel batch processing. Proceedings of the ACM on Programming Languages, 73. https://doi.org/10.1145/3133897
  • [36] Linhares, J. M., Monteiro, J. A., Bailão, A., Cardeira, L., Kondo, T., Nakauchi, S., Picollo, M., Cucci C., Casini, A., Stefani, L. & Nascimento, S. M. C. (2020). How Good Are RGB Cameras Retrieving Colors of Natural Scenes and Paintings? - A Study Based on Hyperspectral Imaging. Sensors, 20(21), 6242. https://doi.org/10.3390/s20216242
  • [37] Image Analyst. (2020). SimpleColorDetection(). MATLAB Central File Exchange. Retrieved December 7, 2020, from https://www.mathworks.com/matlabcentral/fileexchange/26420-simplecolordetection
  • [38] Singh, J., Gupta, P. K., & Rai, K. N. (2011). Solution of fractional bioheat equations by finite difference method and HPM. Mathematical and Computer Modelling, 54(9-10), 2316-2325. https://doi.org/10.1016/j.mcm.2011.05.040
  • [39] Soloperto, G., Conversano, F., Greco, A., Casciaro, E., Ragusa, A., Lay-Ekuakille, A., & Casciaro, S. (2013). Assessment of the Enhancement Potential of Halloysite Nanotubes for Echographic Imaging. 2013 IEEE International Symposium on Medical Measurements and Applications (MeMeA), Canada. https://doi.org/10.1109/MeMeA.2013.6549700
Uwagi
Opracowanie rekordu ze środków MNiSW, umowa Nr 461252 w ramach programu "Społeczna odpowiedzialność nauki" - moduł: Popularyzacja nauki i promocja sportu (2021).
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-4951597d-c363-43b4-b70d-97f9dc4743f9
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.