PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

Thermal effect on damaged stay-cables

Autorzy
Treść / Zawartość
Identyfikatory
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
Cables may suffer severe damage in cable-stayed bridges, leading to cable relaxation and tension loss. Such a damage effect merges in the sag augmentation or tension tightened by the thermal effect. This paper is intended to investigate the static response of damaged cables coupled with the thermal effect. With the introduction of three damage parameters such as damage position, damage degree and damage range as well as temperature parameter, the dimensionless governing equations for cables are derived and the numerical method is employed to solve the nonlinear equations. The static behavior of damaged cables due to the thermal coupling effect is analyzed, and the way to remove the thermal effect is given. It shows that the aspect ratio is the major factor is the deflection of the mid-span and horizontal force in the cable, whereas the angle inclination is the next important parameter. Cables with the natural length close to the chord distance reveal the highest sensitivity to temperature, whereas pre-tensioned and non-pre-tensioned cables are less sensitive to the thermal effect. It further demonstrates that with more damage included, the sensitive scope of the variation coefficient of the axial force with aspect ratio and temperature changes dramatically.
Słowa kluczowe
Rocznik
Strony
1071--1082
Opis fizyczny
Bibliogr. 24 poz., rys., tab.
Twórcy
autor
  • School of Civil Engineering, Nanjing Forestry University, Nanjing, China
autor
  • School of Civil Engineering, Nanjing Forestry University, Nanjing, China
autor
  • Ningbo Transportation Development Prophase Office, Zhejiang, China
Bibliografia
  • 1. Basseville M., Bourquin F., Mevel L., Nasser H., Treyssede F., 2010, Handling the temperature effect in vibration monitoring: two subspace-based analytical approaches, Journal of Engineering Mechanics, 136, 3, 367-378
  • 2. Bouaanani N., 2006, Numerical investigation of the modal sensitivity of suspended cables with localized damage, Journal of Sound and Vibration, 292, 3/5, 1015-1030
  • 3. Cebalos M.A., Prato C.A., 2008, Determination of the axial force on stay cables accounting for their bending stiffness and rotational end restraints by free vibration tests, Journal of Sound and Vibration, 317, 1/2, 127-141
  • 4. Chen C.C., Wu W.H., Liu C.Y., 2012, Effects of temperature variation on cable forces of an extradosed bridge, 6th European Workshop on Structural Health Monitoring, Dresden, Germany, 1-8
  • 5. Cho S., Yim J., Shin S.W., Jung H.J., Yun C.B., Wang M.L., 2013, Comparative field study of cable tension measurement for a cable-stayed bridge, Journal of Bridge Engineering, 18, 8, 748-757
  • 6. Deng Y., Ding Y., LI A., 2010, Structural condition assessment of long-span suspension Bridges using long-term monitoring data, Earthquake Engineering and Engineering Vibration, 9, 1, 123-131
  • 7. Hua X.G., Ni Y.Q., Chen Z.Q., Ko J.M., 2009, Structural damage detection of cable-stayed bridges using changes in cable forces and model updating, Journal of Structural Engineering, 135, 9, 1093-1106
  • 8. Kangas S., Helmicki A., Hunt V., Sexton R., Swanson J., 2012, Cable-stayed bridges: case study for ambient vibration-based cable tension estimation, Journal of Bridge Engineering, 17, Special Issue: Nondestructive Evaluation and Testing for Bridge Inspection and Evaluation, 839-846
  • 9. Kim B.H., Park T., 2007, Estimation of cable tension force using the frequency-based system identification method, Journal of Sound and Vibration, 304, 3/5, 660-676
  • 10. Kim B.H., Park T., Shin H., Yoon T.Y., 2007, A comparative study of the tension estimation methods for cable supported bridges, Steel Structures, 7, 77-84
  • 11. Kullaa J., 2003, Is temperature measurement essential in structural health monitoring, Proceeding of International Workshop on Structural Health Monitoring, Stanford University, Palo Alto, Calif., 717-724
  • 12. Lepidi M., Gattulli V., 2012, Static and Dynamic response of elastic suspended cables with thermal effects, International Journal of Solids and Structure, 49, 9, 1103-1116
  • 13. Lepidi M., Gattulli V., Vestroni F., 2007, Static and dynamic response of elastic suspended cables with damage, International Journal of Solids and Structures, 44, 25/26, 8194-8212
  • 14. Materazzi A.L., 2011, Eigenproperties of suspension bridges with damage, Journal of Sound and Vibration, 330, 26, 6420-6434
  • 15. Mordini A., Savoy K., Wenzel H., 2008, Damage detection on stay cables using an open source-based framework for finite element model updating, Structural Health Monitoring, 7, 2, 91-102
  • 16. Ni Y.Q., Ko J.M., Zheng G., 2002, Dynamic analysis of large-diameter sagged cables ta king into account flexural rigidity, Journal of Sound and Vibration, 257, 2, 301-319
  • 17. Peeters B., Maeck J., Deroeck G., 2001, Vibration-based damage detection in civil engineering: excitation sources and temperature effects, Smart Materials and Structures, 10, 3, 518-527
  • 18. Ren W.X., Chen G., Hu W.H., 2005, Empirical formulas to estimate cable tension by cable fundamental frequency, Structural Engineering and Mechanics, 20, 3, 363-380
  • 19. Treysssede F., 2009, Free linear vibrations of cables under thermal stress, Journal of Sound and Vibration, 327, 1/2, 1-8
  • 20. Treysssede F., 2010, Vibration analysis of horizontal self-weighted beams and cables with Bendig stiffness subjected to thermal loads, Journal of Sound and Vibration, 329, 9, 1536-1552
  • 21. Vanlanduit S., Parloo E., Cauberghe B., Guillaume P., Verboven P., 2005, A robust singular value decomposition for damage detection under changing operating conditions and structural uncertainties, Journal of Sound and Vibration, 284, 3/5,1033-1050
  • 22. Xia Y., Hao H., Giovanna Z., Andrew D., 2006, Long term vibration monitoring of an RC slab: temperature and humidity effect, Engineering Structures, 28, 3, 441-452
  • 23. Zhou H., Ni Y., Ko J., 2010, Constructing input to neural networks for modeling temperature-caused modal variability: mean temperatures, effective temperatures, and principal components of temperatures, Engineering Structures, 32, 6, 1747-1759
  • 24. Zui H., Shinke T., Namita Y., 1996, Practical formulas for estimation of cable tension by vibration method, Journal of Structural Engineering, ASCE, 122, 6, 651-656
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-49502e1c-6373-43f0-881a-bab92e763db9
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.