Identyfikatory
Warianty tytułu
Języki publikacji
Abstrakty
The results of computer modelling of an injection moulding process with microcellular foaming (MuCell®) were presented in this work. The process is based on the dissolving nitrogen in a liquid polymer which is possible when nitrogen is in supercritical fluid state (SCF). After pressure drop of the melt in the injection mould the intensive nucleation of pores occurs and, as the result, the material with high concentration of small pores is created. The pores obtained in this way are of much smaller size than in a conventional foaming process. The pore size in the cross-section of an exemplary injection moulded part was calculated in the computer modelling and compared to the results of microscopical investigation made on the real injection moulded part. It was found that the size of the pores depends on the flow length inside the injection mould and on the position in the part’s cross-section.
Słowa kluczowe
Wydawca
Czasopismo
Rocznik
Tom
Strony
343--346
Opis fizyczny
Bibliogr. 17 poz., fot., rys.
Twórcy
autor
- Czestochowa University of Technology, Faculty of Mechanical Engineering and Computer Science, 21 Armii Krajowej Av., 42-201 Czestochowa, Poland
autor
- Czestochowa University of Technology, Faculty of Mechanical Engineering and Computer Science, 21 Armii Krajowej Av., 42-201 Czestochowa, Poland
Bibliografia
- [1] M.-L. Wang, R.Y. Chang, C.-H. Hsu, Molding Simulation. Theory and Practice, Hanser Publishers, Munich, Cincinnati (2018).
- [2] E. Dostatni, Recycling-oriented eco-design methodology based on decentralised artificial intelligence. Management and Production Engineering Review 9 (3), 79-89 (2018). DOI: https://doi.org/10.24425/119537
- [3] Trexel. A guide to the MuCell microcellular foam injection molding process - T Series. Brochure of Trexel company.rexel.com
- [4] CellMOULD®. Foam injection molding for light-weight parts. Wittmann Battenfeld (2017).
- [5] Ch. Shia-Chung, Soc. Plast. E. 10 (2009). 10.1002/spepro.000055
- [6] E. Bociąga, Special methods of polymers injection moulding (in Polish), WNT, Warsaw (2008).
- [7] D. Sykutera, P. Szewczykowski, M. Roch, Ł. Wajer, M. Grabowski, M. Bieliński, Polimery 63 (11-12), 743-749 (2018). DOI: https://doi.org/10.14314/polimery.2018.11.1
- [8] M. Szostak, P. Krzywdzińska, M. Barczewski, Polimery 63 (2), 145-152 (2018). DOI: https://doi.org/10.14314/polimery.2018.2.8
- [9] D. Dias, C. Peixoto, R. Marques, C. Araújo, D. Pereira. P. Costa, V. Paulo, S. Cruz, Int. J. Lightweight Mater. Manuf. 5, 137-152 (2022). DOI: https://doi.org/10.1016/j.ijlmm.2021.11.005
- [10] J. Xu, Soc. Plast E. 10. (2009). 10.1002/spepro.000059
- [11] G.-H. Hu, W. Yue, Microcellular Foam Injection Molding Process, In book: Some Critical Issues for Injection Molding (2012). DOI: https://doi.org/10.5772/34513
- [12] E. Bociąga, P. Palutkiewicz, Microcellular Injection Moulding (in Polish) Polymer Processing / Przetwórstwo Tworzyw 4, 309-317 (2013).
- [13] S. Gong, M. Yuan, A. Chandra, H. Kharbas, A. Osorio, L.S. Turng, International Polymer Processing 2, 202 (2005). DOI: https://doi.org/10.3139/217.1883
- [14] M. Yuan, L.-S. Turng, Polymer 46, 7273-7292 (2005). DOI: https://doi.org/10.1016/j.polymer.2005.06.054
- [15] Q. Ren, M. Wu, Z. Weng, L. Wang, W. Zheng, Y. Hikima, M. Ohshima, J. CO2 Util. 48, 101530 (2021). DOI: https://doi.org/10.1016/j.jcou.2021.101530
- [16] L.J. Hyde, L. Kishbaugh, The MuCell® Injection Molding Process: A Strategic Cost Savings Technology for Electronic Connectors, Ticona Materials (2003).
- [17] M. Hamidinejad, M. Salari, L. Ma, N. Moghimian, B. Zhao, H.K. Taylor, T. Filleter, C.B. Park, Carbon 187, 153-164 (2022). DOI: https://doi.org/10.1016/j.carbon.2021.10.075
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-49409a34-c63a-4f0b-acec-4f63d89eb3e9
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.