PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

First vertical-cavity surface-emitting laser made entirely in Poland

Treść / Zawartość
Identyfikatory
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
The paper presents the first vertical-cavity surface-emitting lasers (VCSELs) designed, grown, processed and evaluated entirely in Poland. The lasers emit at »850 nm, which is the most commonly used wavelength for short-reach (<2 km) optical data communication across multiple-mode optical fiber. Our devices present state-of-the-art electrical and optical parameters, e.g. high room-temperature maximum optical powers of over 5 mW, laser emission at heat-sink temperatures up to at least 95°C, low threshold current densities (<10 kA/cm2) and wall-plug efficiencies exceeding 30% VCSELs can also be easily adjusted to reach emission wavelengths of around 780 to 1090 nm.
Rocznik
Strony
art. no. e137272
Opis fizyczny
Biliogr. 31 poz., rys.
Twórcy
  • Photonics Group, Institute of Physics, Lodz University of Technology, ul. Wólczańska 219, 90-924 Łódź
  • Photonics Group, Institute of Physics, Lodz University of Technology, ul. Wólczańska 219, 90-924 Łódź
  • Vigo System S.A., ul. Poznańska 129/133, 05-850 Ożarów Mazowiecki
  • Vigo System S.A., ul. Poznańska 129/133, 05-850 Ożarów Mazowiecki
  • Photonics Group, Institute of Physics, Lodz University of Technology, ul. Wólczańska 219, 90-924 Łódź
  • Photonics Group, Institute of Physics, Lodz University of Technology, ul. Wólczańska 219, 90-924 Łódź
  • Photonics Group, Institute of Physics, Lodz University of Technology, ul. Wólczańska 219, 90-924 Łódź
  • Photonics Group, Institute of Physics, Lodz University of Technology, ul. Wólczańska 219, 90-924 Łódź
  • Photonics Group, Institute of Physics, Lodz University of Technology, ul. Wólczańska 219, 90-924 Łódź
  • Vigo System S.A., ul. Poznańska 129/133, 05-850 Ożarów Mazowiecki
Bibliografia
  • [1] R.N. Hall, G.E. Fenner, R.J. Kingsley, T.J. Soltys, and R.D. Carlson, “Coherent light emission of radiation from GaAs junctions”, Phys. Rev. Lett. 9(9), 366–368 (1962).
  • [2] M.I. Nathan, W.P. Dumke, G. Burns, F.H. Dill Jr., and G. Lasher, “Stimulated emission of radiation from GaAs p-n junctions”, Appl. Phys. Lett. 1(3), 62–64 (1962).
  • [3] N. Holonyak, Jr. and S.F. Bevacqua, “Coherent (visible) light emission from Ga(As1-xPx), junctions”, Appl. Phys. Lett. 1(4), 82–83 (1962).
  • [4] T.M. Quist et al., “Semiconductor maser of GaAs”, Appl. Phys. Lett. 1(4), 91–92 (1962).
  • [5] I. Hayashi, M.B. Panish, P.W. Foy, and S. Sumski, “Junction lasers which operate continuously at room temperature”, Appl. Phys. Lett. 17(3), 109–110 (1970).
  • [6] J.A. Lott, “Vertical Cavity Surface Emitting Laser Diodes for Communication, Sensing, and Integration” in Semiconductor Nanophotonics. Springer Series in Solid-State Sciences, vol. 194, Eds. M. Kneissl, A. Knorr, S. Reitzenstein, A. Hoffmann, Springer, Cham, 2020.
  • [7] I. Melngailis, “Longitudinal injection plasma laser of InSb”, Appl. Phys. Lett. 6(3), 59–60 (1965).
  • [8] R. Dingle, W. Wiegmann, and C.H. Henry, “Quantum states of confined carriers in very thin AlxGa1-xAs-GaAs–AlxGa1-xAs heterostructures”, Phys. Rev. Lett. 33(14), 827–830 (1974).
  • [9] J.P. van der Ziel, R. Dingle, R.C. Miller, W. Wiegmann, and W.A. Nordland Jr, “Laser oscillation from quantum states in very thin GaAs-Al0.2Ga0.8As multilayer structures”, Appl. Phys. Lett. 26(8), 463–465 (1975).
  • [10] J.P. van der Ziel, and M. Ilegems, “Multilayer GaAs-A10.3Ga0.7As dielectric quarter wave stacks grown by molecular beam epitaxy”, Appl. Opt. 14(11), 2627–2630 (1975).
  • [11] D.R. Scifres, R.D. Burnham, and W. Streifer, “Highly collimated laser beams from electrically pumped SH GaAs/GaAlAs distributed-feedback lasers”, Appl. Phys. Lett. 26(2), 48–50 (1975).
  • [12] D. Scifres and R.D. Burnham, Distributed feedback diode laser, US Patent US 3983509, 28 Sep 1976.
  • [13] H. Soda, K. Iga, C. Kitahara, and Y. Suematsu, “GalnAsP/lnP surface emitting injection lasers”, Jpn. J. Appl. Phys. 18(12), 2329 (1979).
  • [14] M. Ogura, T. Hata, N.J. Kawai, and T. Yao, “GaAs/AlxGa1−xAs multilayer reflector for surface emitting laser diode”, Jpn. J. Appl. Phys. 22(2A), L112–L114 (1983).
  • [15] M. Ogura, T. Hata, and T. Yao, “Distributed feed back surface emitting laser diode with multilayeredheterostructure”, Jpn. J. Appl. Phys. 23(7A), L512–L514 (1984).
  • [16] M. Ogura and T. Yao, “Surface emitting laser diode with AlxGa1−xAs/GaAs multilayered heterostructure”, J. Vac. Sci. Technol. B 3(2), 784–787 (1985).
  • [17] F. Koyama, F. Kinoshita, and K. Iga, “Room temperature cw operation of GaAs vertical cavity surface emitting laser”, Trans. IEICE Jpn. E71(11), 1089–1090 (1988).
  • [18] P. Boulay, “After 20 years the VCSEL business has found its killer application – and is likely to explode”, European VCSEL Day, Brussels, 2019.
  • [19] M. Gębski, P.S. Wong, M. Riaziat, and J.A. Lott, “30 GHz bandwidth temperature stable 980 nm VCSELs with AlAs/GaAs bottom DBRs for optical data communication”, J. Phys. Photonics, 2(3), 035008 (2020).
  • [20] N. Haghighi, P. Moser, and J.A. Lott, “Power, bandwidth, and efficiency of single VCSELs and small VCSEL arrays”, IEEE J. Sel. Top. Quantum Electron. 25(6), 1–15 (2019).
  • [21] S. Okur, M. Scheller, J.F. Seurin, A. Miglo, G. Xu, D. Guo, R. Van Leeuwen, B. Guo, H. Othman, L. Watkins, and C. Ghosh, “High-power VCSEL arrays with customized beam divergence for 3D-sensing applications”, in Vertical-Cavity Surface-Emitting Lasers XXIII 2019, International Society for Optics and Photonics, 2019, vol. 10938, p. 109380F.
  • [22] I. Fujioka, Z. Ho, X. Gu, and F. Koyama, “Solid state LiDAR with sensing distance of over 40m using a VCSEL beam scanner”, In 2020 Conference on Lasers and Electro-Optics (CLEO) 2020, 2020, art. 10(1–2).
  • [23] B. Darek, B. Mroziewicz, and J. Świderski. “Polish-made laser using a gallium arsenide junction (Gallium arsenide laser design using p-n junction obtained by diffusion of zinc in tellurium doped n-GaAs single crystal)”, Archiwum Elektrotechniki 15(1), 163–167 (1966).
  • [24] P. Prystawko et al., “Blue-Laser Structures Grown on Bulk GaN Crystals”, Phys. Status Solidi A 192(2), 320–324 (2002).
  • [25] K. Kosiel et al., “77 K Operation of AlGaAs/GaAs Quantum Cascade Laser at 9 μm”, Photonics Letters of Poland 1(1), 16–18, 2009.
  • [26] J. Muszalski et al., “InGaAs resonant cavity light emitting diodes (RC LEDs)”, 9th Int. Symp. “Nanostructures: Physics and Technology” MPC.04, St Petersburg, Russia, 2001.
  • [27] A.G. Baca and C.I. Ashby, “Fabrication of GaAs devices, chapter 10 “Wet oxidation for optoelectronic and MIS GaAs devices”, IET, London, United Kingdom, 2005.
  • [28] Trumpf, Single and multiple-mode VCSELs. [Online] https://www.trumpf.com/en_US/products/vcsel-solutions-photodiodes/single-multiple-mode-vcsels/single-mode-vcsels/
  • [29] F.A.I. Chaqmaqchee and J.A. Lott, “Impact of oxide aperturę diameter on optical output power, spectral emission, and bandwidth for 980 nm VCSELs”, OSA Continuum, 3(9), 2602–2613 (2020).
  • [30] J. Lavrencik et al., “Error-free 850 nm to 1060 nm VCSEL links: feasibility of 400Gbps and 800Gbps 8λ-SWDM”, Proceedings 45th European Conference on Optical Communication (ECOC), Dublin, Ireland, 2019, P84.
  • [31] E. Simpanen et al., “1060 nm single-mode VCSEL and single-mode fiber links for long-reach optical interconnects”, J. Lightwave Technol. 37(13), 2963–2969 (2019).
Uwagi
Opracowanie rekordu ze środków MNiSW, umowa Nr 461252 w ramach programu "Społeczna odpowiedzialność nauki" - moduł: Popularyzacja nauki i promocja sportu (2021).
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-493d8358-5828-4833-a0d8-b55731a7f2d7
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.