PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

An iterative approximation of common solutions of split generalized vector mixed equilibrium problem and some certain optimization problems

Wybrane pełne teksty z tego czasopisma
Identyfikatory
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
In this paper, we study the problem of finding a common solution of split generalized vector mixed equlibrium problem (SGVMEP), fixed point problem (FPP) and variational inequality problem (VIP). We propose an inertial-type iterative algorithm, which uses a projection onto a feasible set and a linesearch, which can be easily calculated. We prove a strong convergence of the sequence generated by the proposed algorithm to a common solution of SGVMEP, fixed point of a quasi- ϕ -nonexpansive mapping and VIP for a general class of monotone mapping in 2-uniformly convex and uniformly smooth Banach space E1 and a smooth, strictly convex and reflexive Banach space E2 . Some numerical examples are presented to illustrate the performance of our method. Our result improves some existing results in the literature.
Wydawca
Rocznik
Strony
335--358
Opis fizyczny
Bibliogr. 56 poz., rys.
Twórcy
  • School of Mathematics, Statistics and Computer Science, University of KwaZulu-Natal, Durban, South Africa
  • School of Mathematics, Statistics and Computer Science, University of KwaZulu-Natal, Durban, South Africa
  • DSI-NRF Center of Excellence in Mathematical and Statistical Sciences (CoE-MaSS), Johannesburg, South Africa
Bibliografia
  • [1] H. A. Abass, K. O. Aremu, L. O. Jolaoso, and O. T. Mewomo, An inertial forward-backward splitting method for approximating solutions of certain optimization problems, J. Nonlinear Funct. Anal. 2020 (2020), 6, DOI: https://doi.org/10.23952/jnfa.2020.6.
  • [2] C. Izuchukwu, G. N. Ogwo, and O. T. Mewomo, An inertial method for solving generalized split feasibility problems over the solution set of monotone variational inclusions, Optimization (2020), DOI: https://doi.org/10.1080/02331934.2020.1808648.
  • [3] C. Bryne, Iterative oblique projection onto convex sets and split feasibility problem, Inverse Problems 18 (2002), 441–453.
  • [4] Y. Censor and A. Lent, An iterative row-action method for interval complex programming, J. Optim. Theory Appl. 34 (1981), 321–353.
  • [5] T. O. Alakoya, A. Taiwo, O. T. Mewomo, and Y. J. Cho, An iterative algorithm for solving variational inequality, generalized mixed equilibrium, convex minimization and zeros problems for a class of nonexpansive-type mappings, Ann. Univ. Ferrara Sez. VII Sci. Mat. 67 (2021), 1-21.
  • [6] E. C. Godwin, C. Izuchukwu, and O. T. Mewomo, An inertial extrapolation method for solving generalized split feasibility problems in real Hilbert spaces, Boll. Unione Mat. Ital. 14 (2021), 379-401.
  • [7] T. O. Alakoya, L. O. Jolaoso, and O. T. Mewomo, A self adaptive inertial algorithm for solving split variational inclusion and fixed point problems with applications, J. Ind. Manag. Optim. 17 (2021), 2733–2759, DOI: http://dx.doi.org/10.3934/jimo.2020152.
  • [8] K. O. Aremu, C. Izuchukwu, G. N. Ogwo, and O. T. Mewomo, Multi-step Iterative algorithm for minimization and fixed point problems in p-uniformly convex metric spaces, J. Ind. Manag. Optim. 17 (2021), 2161–2180.
  • [9] O. K. Oyewole, H. A. Abass, and O. T. Mewomo, A strong convergence algorithm for a fixed point constrained split null point problem, Rend. Circ. Mat. Palermo II 70 (2021), 389–408.
  • [10] A. Latif, D. R. Sahu, and Q. H. Ansari, Variable KM-like algorithms for fixed point problems and split feasibility problems, Fixed Point Theory Appl. 211 (2014), 211, DOI: https://doi.org/10.1186/1687-1812-2014-211.
  • [11] K. R. Kazmi and M. Farid, Some iterative schemes for generalized vector equilibrium problems and relatively nonexpansive mappings in Banach spaces, Math. Sci. 7 (2013), 19.
  • [12] J. W. Peng and J. C. Yao, A new hybrid-extragradient method for generalized mixed equilibrium problems and fixed point problems and variational inequality problems, Taiwan J. Math. 12 (2008), 1401–1432.
  • [13] E. Blum and W. Oettli, From optimization and variational inequalities to equilibrium problems, Math. Stud. 63 (1994), 123–145.
  • [14] G. Chen, X. Huang, and X. Yang, Vector optimization: Set-valued and variational analysis, Lecture Notes in Economics and Mathematical Systems, Vol. 541, Springer, Berlin, Germany, 2005.
  • [15] F. Giannessi, Vector Variational Inequalities and Vector Equilibrium, Vol. 38, Kluwer Academic Publishers, Dordrecht, The Netherlands, 2000.
  • [16] T. O. Alakoya, L. O. Jolaoso, and O. T. Mewomo, Strong convergence theorems for finite families of pseudomonotone equilibrium and fixed point problems in Banach spaces, Afr. Mat. 32 (2021), 897–923, DOI: https://doi.org/10.1007/s13370-020-00869-z.
  • [17] T. O. Alakoya, L. O. Jolaoso, A. Taiwo, and O. T. Mewomo, Inertial algorithm with self-adaptive stepsize for split common null point and common fixed point problems for multivalued mappings in Banach spaces, Optimization (2021), DOI: https://doi.org/10.1080/02331934.2021.1895154.
  • [18] O. K. Oyewole and O. T. Mewomo, A subgradient extragradient algorithm for solving split equilibrium and fixed point problems in reflexive Banach spaces, J. Nonlinear Funct. Anal. 2020 (2020), 2.
  • [19] O. K. Oyewole and O. T. Mewomo, A strong convergence theorem for split null point problem and generalized mixed equilibrium problem in real Hilbert spaces, Axioms 10 (2020), 16.
  • [20] D. T. Luc, Theory of vector optimization, Lecture Notes in Economics and Mathematical Systems, Vol. 319, Springer, Berlin, 1989.
  • [21] A. Daniilidis and N. Hadjisavvas, Characterization of nonsmooth semistrictly quasiconvex and strictly quasiconvex functions, J. Optim. Theory Appl. 102 (1999), 525–536.
  • [22] L. Ćirić, A. Rafiq, S. Radenović, M. Rajović, and J. S. Ume, Common fixed point theorems for non-self-mappings in metric spaces of hyperbolic type, J. Comput. Appl. Math. 233 (2010), 2966–2974.
  • [23] L. Ćirić, A. Ra fiq, S. Radenović, M. Rajović, and J. S. Ume, On Mann implicit iterations for strongly accretive and strongly pseudo-contractive mappings, Appl. Math. Comput. 198 (2008), 128–137.
  • [24] T. O. Alakoya, L. O. Jolaoso, and O. T. Mewomo, Modified inertial subgradient extragradient method with self adaptive stepsize for solving monotone variational inequality and fixed point problems, Optimization 70 (2020), no. 3, 545–574, DOI: https://doi.org/10.1080/02331934.2020.1723586.
  • [25] S. S. Chang, S. Salahuddin, L. Wang, and M. Liu, On the weak convergence for solving semistrictly quasi-monotone variational inequality problems, J. Inequal. Appl. 2019 (2019), 74.
  • [26] S. S. Chang, H. W. JosephLee, and C. K. Chan, A new method for solving equilibrium problem, fixed point problem and variational inequality problem with application to optimization, Nonlinear Anal. 70 (2009), 3307–3319.
  • [27] S. He, T. Wu, A. Gibali, and Q.-L. Dong, Totally relaxed, self-adaptive algorithm for solving variational inequalities over the intersection of sub-level sets, Optimization 67 (2018), no. 9, 1487–1504.
  • [28] M. A. Olona, T. O. Alakoya, A. O.-E. Owolabi, and O. T. Mewomo, Inertial shrinking projection algorithm with self-adaptive step size for split generalized equilibrium and fixed point problems for a countable family of nonexpansive multivalued mappings, Demonstr. Math. 54 (2021), 47-67.
  • [29] M. A. Olona, T. O. Alakoya, A. O.-E. Owolabi, and O. T. Mewomo, Inertial algorithm for solving equilibrium, variational inclusion and fixed point problems for an infinite family of strictly pseudocontractive mappings, J. Nonlinear Funct. Anal. 2021 (2021), 10.
  • [30] A. O.-E. Owolabi, T. O. Alakoya, A. Taiwo, and O. T. Mewomo, A new inertial-projection algorithm for approximating common solution of variational inequality and fixed point problems of multivalued mappings, Numer. Algebra Control Optim. (2021), DOI: http://dx.doi.org/10.3934/naco.2021004.
  • [31] S.-Q. Shan and N.-J. Huang, An iterative method for generalized mixed vector equilibrium problems and fixed point of nonexpansive mappings and variational inequalities, Taiwan. J. Math. 16 (2012), 1681–1705.
  • [32] M. Farid and K. R. Kazmi, A new mapping for finding a common solution of split generalized equilibrium problem, variational inequality problem and fixed point problem, Korean. J. Math. 27 (2019), 297–327.
  • [33] J. B. Hiriart-Urruty and C. Lemarchal, Fundamentals of Convex Analysis, Springer-Verlag, Berlin, 2001.
  • [34] A. Taiwo, T. O. Alakoya, and O. T. Mewomo, Strong convergence theorem for solving equilibrium problem and fixed point of relatively nonexpansive multi-valued mappings in a Banach space with applications, Asian-Eur. J. Math. 14 (2021), no. 8, 2150137, DOI: https://doi.org/10.1142/S1793557121501370.
  • [35] A. Taiwo, L. O. Jolaoso, and O. T. Mewomo, Inertial-type algorithm for solving split common fixed-point problem in Banach spaces, J. Sci. Comput. 86 (2021), 12.
  • [36] Y. I. Alber, Metric and generalized projection operators in Banach spaces: properties and applications, in: A. G. Kartsatos (ed.), Theory and Applications of Nonlinear Operators and Accretive and Monotone Type, Lecture Notes in Pure and Applied Mathematics, Vol. 178, Dekker, New York, 1996, pp. 15–50.
  • [37] G. N. Ogwo, C. Izuchukwu, and O. T. Mewomo, Inertial methods for finding minimum-norm solutions of the split variational inequality problem beyond monotonicity, Numer. Algorithms 88 (2021), 1419–1456, DOI: https://doi.org/10.1007/s11075-021-01081-1.
  • [38] I. Cioranescu, Geometry of Banach Spaces, Duality Mappings and Nonlinear, Kluwer, Dordrecht, 1990.
  • [39] W. Takahashi, Introduction to Nonlinear and Convex Analysis, Yokohama Publishers, Yokohama, Japan, 2009.
  • [40] R. T. Rockfellar, Monotone operators and the proximal point algorithm, SIAM J. Control Optim. 14 (1977), 877–808.
  • [41] D. Butnariu, S. Reich, and A. J. Zaslavski, Asymptotic behavior of relatively nonexpansive operators in Banach spaces, J. Appl. Anal. 7 (2001), 151–174.
  • [42] A. Taiwo, T. O. Alakoya, and O. T. Mewomo, Halpern-type iterative process for solving split common fixed point and monotone variational inclusion problem between Banach spaces, Numer. Algorithms 86 (2021), 1359–1389.
  • [43] S. Y. Matsushita and W. Takahashi, A strong convergence theorem for relatively nonexpansive mappings in a Banach space, J. Approx. Theory 134 (2005), 257–266.
  • [44] K. Ball, E. A. Carlen, and E. H. Lieb, Sharp uniform convexity and smoothness inequalities for trace norms, Invent. Math. 115 (1994), 463–482.
  • [45] C. E. Chidume, Geometric properties of Banach spaces and nonlinear iteration, Appl. Math. Comput. 271 (2015), 251–258.
  • [46] H. K. Xu, Inequalities in Banach spaces with applications, Nonlinear Anal. 16 (1991), 1127–1138.
  • [47] S. Kamimura and W. Takahashi, Strong convergence of a proximal-type algorithm in a Banach space, SIAM J. Optim. 13 (2002), 938–945.
  • [48] C. E. Chidume, S. I. Ikechukwu, and A. Adamu, Inertial algorithm for approximating a common fixed point for a countable family of relatively nonexpansive maps, Fixed Point Theory Appl. 2018 (2018), 9.
  • [49] K. Nakajo, Strong convergence for gradient projection method and relatively nonexpansive mappings in Banach spaces, Appl. Math. Comput. 271 (2015), 251–258.
  • [50] N. X. Tan, On the existence of solution of quasivariational inclusion problems, J. Optim. Theory Appl. 123 (2004), 619–638.
  • [51] X. H. Gong and H. M. Yue, Existence of efficient solutions and strong solutions for vector equilibrium problems, J. Nanchang Univ. 32 (2008), 1 –5.
  • [52] N. Hadjisavvas and S. Chaible, On strong pseudomonotonicity and (semi)strict quasimonotonicity, J. Optim. Theory Appl. 79 (1993), 139–155.
  • [53] I. V. Konnov, On quasimonotone variational inequalities I, J. Optim. Theory Appl. 99 (1998), 165–181.
  • [54] G. N. Ogwo, C. Izuchukwu, and O. T. Mewomo, A modified extragradient algorithm for a certain class of split pseudomonotone variational inequality problem, Numer. Algebra Control Optim. (2021), DOI: http://dx.doi.org/10.3934/naco.2021011.
  • [55] S. Zhang, Generalized mixed equilibrium problem in Banach spaces, Appl. Math. Mech-Engl. Ed. 30 (2009), 1105–1112.
  • [56] A. Bowers and N. J. Kalton, An Introductory Course in Functional Analysis, Springer, New York, 2014.
Uwagi
PL
Opracowanie rekordu ze środków MNiSW, umowa Nr 461252 w ramach programu "Społeczna odpowiedzialność nauki" - moduł: Popularyzacja nauki i promocja sportu (2021).
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-493c9f13-8ec3-4a19-80e4-02ccff91c174
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.