PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Powiadomienia systemowe
  • Sesja wygasła!
  • Sesja wygasła!
  • Sesja wygasła!
  • Sesja wygasła!
  • Sesja wygasła!
  • Sesja wygasła!
Tytuł artykułu

Moment inequalities for nonnegative random variables

Wybrane pełne teksty z tego czasopisma
Identyfikatory
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
We give reciprocal versions of the Sclove et al. and Feller inequalities for moments of nonnegative random variables. Our results apply to any nonnegative random variable. The strongest assumption is that the moments involved must be finite. Thus, the results obtained also hold for any empirical distribution with nonnegative data. These facts allow potential applications in numerical analysis, probability, and statistical inference, among other disciplines. Moreover, the proposed methodology offers an alternative approach to obtain new inequalities and even to improve some known inequalities. For instance, we give new inequalities for the ratio of gamma functions. In this context, we also improve an inequality by Bustoz and Ismail and some cases of inequalities due to Gurland and Dragomir et al. Additionally, we present a new inequality for finite sums of nonnegative or nonpositive numbers. For some cases, this relation improves even the Cauchy-Bunyakovsky-Schwarz inequality.
Rocznik
Strony
41--61
Opis fizyczny
Bibliogr. 41 poz.
Twórcy
  • Departamento de Estadística Universidad Autónoma de Aguascalientes Aguascalientes, Ags., México
  • Departamento de Estadística Universidad Autónoma de Aguascalientes Aguascalientes, Ags., México
  • Departamento de Estadística Universidad Autónoma de Aguascalientes Aguascalientes, Ags., México
  • División Académica de Ciencias Básicas Universidad Juárez Autónoma de Tabasco Cunduacán, Tab., México
Bibliografia
  • 1] S. E. Abu-Youssef, Moment inequality on new renewal better than used class of life distributions with hypothesis testing application, Appl. Math. Comput. 149 (2004), 651-659.
  • [2] I. A. Ahmad, Moments inequalities of aging families of distributions with hypotheses testing applications, J. Statist. Plan. Inference 92 (2001), 121-132.
  • [3] M. M. Al-Jararha and J. M. Al-Jararha, Inequalities of gamma function appearing in generalizing probability sampling design, Austral. J. Math. Anal. Appl. 17 (2020), art. 17, 9 pp.
  • [4] J. Bustoz and M. E. H. Ismail, On gamma function inequalities, Math. Comput. 47 (1986), 659-667.
  • [5] P. P. Chakrabarty, On certain inequalities connected with gamma function, Scand. Actuar. J. 1969, 20-23.
  • [6] S. Chakraborti, F. Jardim and E. Epprecht, Higher-order moments using the survival function: The alternative expectation formula, Amer. Statist. 73 (2019), 191-194.
  • [7] C. M. Cuadras, On the covariance between functions, J. Multivariate Anal. 81 (2002), 19-27.
  • [8] J. A. Domínguez-Molina, G. González-Farías and R. Rodríguez-Dagnino, A practical procedure to estimate the shape parameter in the generalized Gaussian distribution, Tech. Rep. CIMAT I-01-18 (2001), www.researchgate.net/publication/241152541.
  • [9] S. S. Dragomir, R. P. Agarwal and N. S. Barnett, Inequalities for beta and gamma functions via some classical and new integral inequalities, J. Inequal. Appl. 5 (2000), 103-165.
  • [10] C. J. Everett, Inequalities for the Wallis product, Math. Mag. 43 (1970), 30-33.
  • [11] W. Feller, An Introduction to Probability Theory and its Applications, Vol. 2, 2nd ed., Wiley,
  • New York, 1971.
  • [12] J. Glasser and R. G. Regis, A generalized survival function method for the expectation of functions of nonnegative random variables, Amer. J. Math. Management Sci. 40-4 (2021), 378-390.
  • [13] D. V. Gokhale, On an inequality for gamma functions, Scand. Actuar. J. 1962, 213-215.
  • [14] J. Gurland, An inequality satisfied by the gamma function, Scand. Actuar. J. 1956, 171-172.
  • [15] W. Hoeffding, Massstabinvariante Korrelationtheorie, Schrift. Math. Inst. & Inst. Angew. Math. Univ. Berlin 5 (1940), 181-233; English transl.: Scale-invariant correlation theory, in: The Collected Works of Wassily Hoeffding, Springer, New York, 1994, 56-107.
  • [16] T. Hu, M. Ma and A. K. Nanda, Moment inequalities for discrete ageing families, Comm. Statist. Theory Methods 32 (2003), 61-90.
  • [17] P. Ivády, On a beta function inequality, J. Math. Inequal. 6 (2012), 333-341. dx.
  • [18] P. Ivády, Extension of a beta function inequality, J. Math. Sci. Adv. Appl. 47 (2017), 1-8. dx.
  • [19] A. Jakubowski, A complement to the Chebyshev integral inequality, Statist. Probab. Lett. 168 (2021), art. 108934, 4 pp.
  • [20] A. W. Kemp, Classes of discrete lifetime distributions, Comm. Statist. Theory Methods 33 (2004), 3069-3093.
  • 21] A. W. Kemp, On gamma function inequalities, Scand. Actuar. J. 1973, 65-69.
  • [22] A. W. Kimball, On dependent tests of significance in the analysis of variance, Ann. Math. Statist. 22 (1951), 600-602,
  • [23] H. S. Kwong and S. Nadarajah, Expectation formulas for integer valued multivariate random variables, Comm. Statist. Theory Methods 47 (2018), 5514-5518.
  • [24] G. D. Lin, On the Mittag-Leffler distributions, J. Statist. Plan. Inference 74 (1998), 1-9.
  • [25] A. Lo, Functional generalizations of Hoeffding’s covariance lemma and a formula for Kendall’s tau, Statist. Probab. Lett. 122 (2017), 218-226.
  • [26] K. V. Mardia and J. W. Thompson, Unified treatment of moment-formulae, Sankhy¯a Ser. A 34 (1972), 121-132.
  • [27] M. Merkle, Gurland’s ratio for the gamma function, Comput. Math. Appl. 49 (2005), 389-406.
  • [28] D. S. Mitrinovi´c, Analytic Inequalities, Springer, Berlin, 1970.
  • [29] K. Nantomah, Inequalities concerning the (p, k)-gamma and (p, k)-polygamma functions, Note Mat. 38 (2019), 93-104.
  • [30] J. P. Nolan, Univariate Stable Distributions, Springer, Cham, 2020.
  • [31] H. Ogasawara, Alternative expectation formulas for real-valued random vectors, Comm. Statist. Theory Methods 49 (2020), 454-470.
  • [32] I. Olkin and L. Shepp, Several colorful inequalities, Amer. Math. Monthly 113 (2006), 817-822.
  • [33] H. H. Panjer, Maximum likelihood estimation from distributions useful in actuarial applications, PhD thesis, Univ. of Western Ontario, 1975.
  • [34] F. Qi, Bounds for the ratio of two gamma functions, J. Inequal. Appl. 2010, art. 493058, 84 pp.
  • [35] B. R. Rao, An improved inequality satisfied by the gamma function, Scand. Actuar. J. 1969, 78-83.
  • [36] H. Rockette, C. Antle and L. A. Klimko, Maximum likelihood estimation with the Weibull model, J. Amer. Statist. Assoc. 69 (1974), 246-249.
  • [37] H. Ruben, Variance bounds and orthogonal expansions in Hilbert space with an application to inequalities for gamma functions and π, J. Reine Angew. Math. 225 (1967), 147-153.
  • [38] S. L. Sclove, G. Simons and J. V. Ryzin, Further remarks on the expectation of the reciprocal of a positive random variable, Amer. Statist. 21 (1967), 33-34.
  • [39] P. K. Sen, The impact of Wassily Hoeffding’s research on nonparametrics, in: N. I. Fisher and P. K. Sen (eds.), The Collected Works of Wassily Hoeffding, Springer, New York, 1994, 29-55.
  • [40] J. F. Tian and Z. Yang, Asymptotic expansions of Gurland’s ratio and sharp bounds for their remainders, J. Math. Anal. Appl. 493 (2021), no. 2, art. 124545, 19 pp.
  • [41] C. C. Yeh, H. W. Yeh, and W. Chan, Some equivalent forms of the arithmetic-geometric mean inequality in probability: A survey, J. Inequal. Appl. 2008, art. 386715, 9 pp.
Uwagi
Opracowanie rekordu ze środków MEiN, umowa nr SONP/SP/546092/2022 w ramach programu "Społeczna odpowiedzialność nauki" - moduł: Popularyzacja nauki i promocja sportu (2022-2023).
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-493c0f45-b2c7-456c-9729-7609e127bbf7
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.