PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

Manufacturing of substitutes for spongy bone with increased absorbability

Treść / Zawartość
Identyfikatory
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
Composite scaffolds with increased hydrophilicity were prepared for cancellous bone regeneration by the freeze-extraction method. As a construction material, a poly–L–lactide (PLLA) was applied. As a hydrophilic, modifying agent a methacrylic acid copolymer, trade name Eudragit, was used. Apreliminary investigation and optimization of the processwere performed. For the obtained scaffolds, regression equations determining the effect of: EudragitE100/PLLA weight ratio; volume ratio of methanol (porophore)/PLLA solution in dioxane on interconnected porosity and mass absorbability of obtained implants were calculated.
Rocznik
Strony
411--–423
Opis fizyczny
Bibliogr. 34 poz., rys., tab.
Twórcy
  • Warsaw University of Technology, Faculty of Chemistry, Noakowskiego 3, 00-664 Warszawa, Poland
  • Warsaw University of Technology, Faculty of Chemistry, Noakowskiego 3, 00-664 Warszawa, Poland
  • Warsaw University of Technology, Faculty of Chemistry, Noakowskiego 3, 00-664 Warszawa, Poland
Bibliografia
  • 1. Bai S., Han H., Huang X., Xu W., Kaplan D.L., Zhu H., Lu Q., 2015. Silk scaffolds with tunable mechanical capability for cell differentiation. Acta Biomater., 20, 22–31. DOI: 10.1016/j.actbio.2015.04.004.
  • 2. Blanco J., Alonso A., Sanz M., 2005. Long-term results and survival rate of implants treated with guided bone regeneration: A 5-year case series prospective study. Clin. Oral Implants Res., 16, 294–301. DOI: 10.1111/j.16000501.2005.01106.x.
  • 3. Błaszczyk B., Kaspera W., Ficek K., Kajor M., Binkowski M., Stodolak-Zych E., Grajoszek A., Stojko J., Bursig H., Ładziński P., 2018. Effects of polylactide copolymer implants and platelet-rich plasma on bone regeneration within a large calvarial defect in sheep. Biomed Res. Int., 412–471. DOI: 10.1155/2018/4120471.
  • 4. BoseS.,RoyM.,BandyopadhyayA.,2012.Recentadvancesinbonetissueengineeringscaffolds.TrendsBiotechnol., 30, 546–54. DOI: 10.1016/j.tibtech.2012.07.005.
  • 5. Bose S., Vahabzadeh S., Bandyopadhyay A., 2013. Bone tissue engineering using 3D printing. Mater. Today, 16, 496–504. DOI: 10.1016/j.mattod.2013.11.017.
  • 6. Budnicka M., Trzaskowska J., Gadomska-Gajadhur A., Ruśkowski P., Synoradzki L., 2019. Preparation of polylactide scaffolds for cancellous bone regeneration-preliminary investigation and optimization of the process. Pure Appl. Chem.. DOI: 10.1515/pac-2018-0708.
  • 7. Budyanto L., Goh Y.Q., Ooi C.P., 2009. Fabrication of porous poly(l-lactide) (plla) scaffolds for tissue engineering using liquid–liquid phase separation and freeze extraction. J. Mater. Sci. – Mater. Med., 20, 105–111. DOI:10.1007/s10856-008-3545-8.
  • 8. BuzarovskaA.,GualandiC.,ParrilliA.,ScandolaM.,2015.EffectofTiO2 nanoparticleloadingonpoly(l-lacticacid) porous scaffolds fabricated by TIPS. Composites Part B, 81, 189–195. DOI: 10.1016/j.compositesb.2015.07.016.
  • 9. Chang H.-I., Wang Y., 2011. Cell responses to surface and architecture of tissue engineering scaffolds. In: Eberli D., Regenerative medicine and tissue engineering. IntechOpen. DOI: 10.5772/21983.
  • 10. Ficek K., Filipek J., Wojciechowski P., Kopec K., Stodolak-Zych E., Blazewicz S., 2015. A bioresorbable polylactide implant used in bone cyst filling. J. Mater. Sci. - Mater. Med., 27, 33. DOI: 10.1007/s10856-015-5647-4.
  • 11. Gadomska-Gajadhur A., Budnicka M., Ruśkowski P., Synoradzki L., Tytman A., Szymaniak M., 2018. Sposób wytwarzania polilaktydowego substytutu kości ga˛bczastej o zwie˛kszonej hydrofilowości. PL P.426 819, issued 2018.
  • 12. Gadomska-Gajadhur A., Ruśkowski P., Synoradzki L., Trzaskowska J., Kruk A., Budnicka M., 2018. Sposób wytwarzania dynamicznego substytutu kości ga˛bczastej. PL P.425 802, issued 2018.
  • 13. Gogolewski S., Pineda L., Büsing C.M., 2000. Bone regeneration in segmental defects with resorbable polymeric membranes: IV. Does the polymer chemical composition affect the healing process? Biomaterials 21, 2513–2520. DOI: 10.1016/S0142-9612(00)00119-8.
  • 14. Hajmowicz H., Wisialski J., Synoradzki L., 2011. Direct hydrolysis of O,O’-dibenzoyltartaric anhydride – an alternative method for manufacture of the same acid: Tartaric acid and its o-acyl derivatives. Part 9(1). Org. Process Res. Dev., 15, 427–434. DOI: 10.1021/op100315k.
  • 15. Ip W.-Y., Gogolewski S., 2007. Clinical application of resorbable polymers in guided bone regeneration. Macromol. Symp., 253, 139–146. DOI: 10.1002/masy.200750721.
  • 16. Davim J.P., (Ed.), 2016. Design of experiments in production engineering. 1st ed. Springer International Publishing. DOI: 10.1007/978-3-319-23838-8.
  • 17. Kołbuk D., Urbanek O., Denis P., Choińska E., 2019. Sonochemical coating as an effective method of polymeric nonwovens functionalization. J. Biomed. Mater. Res. Part A, 107, 2447–2457. DOI: 10.1002/jbm.a.36751.
  • 18. Kruk A., 2018. Biodegradowalne polimerowe rusztowania przeznaczone do hodowli chondrocytów. PhD Thesis. Warsaw University of Technology.
  • 19. Kruk A., Gadomska-Gajadhur A., Ruskowski P., Chwojnowski A., Synoradzki L., 2017. Preparation of polylactide scaffolds with squashy structure for cell culture – a preliminary research and optimization. Polimery/Polymers, 62, 118–126. DOI: 10.14314/polimery.2017.118.
  • 20. Mazzoli A., 2013. Selective laser sintering in biomedical engineering. Med. Biol. Eng. Comput., 51, 245–256. DOI: 10.1007/s11517-012-1001-x.
  • 21. Mi H.-Y., Jing X., Turng L.-S., 2014. Fabrication of porous synthetic polymer scaffolds for tissue engineering. J. Cell. Plast., 51, 165–196. DOI: 10.1177/0021955X14531002.
  • 22. Politis S.N., Colombo P., Colombo G., Rekkas D.M., 2017. Design of experiments (DoE) in pharmaceutical development. Drug Dev. Ind. Pharm., 43, 889–901. DOI: 10.1080/03639045.2017.1291672.
  • 23. Olszta M.J., Cheng X., Jee S.S., Kumar R., Kim Y.-Y., Kaufman M.J., Douglas E.P., Gower L.G., 2007. Bone structure and formation: A new perspective. Mater. Sci. Eng., R., 58, 77–116. DOI: 10.1016/j.mser.2007.05.001.
  • 24. Popescu D., Zapciu A., Amza C., Baciu F., Marinescu R., 2018. FDM process parameters influence over the mechanical properties of polymer specimens: A review. Polym. Test., 69, 157–166. DOI: 10.1016/j.polymertesting. 2018.05.020.
  • 25. Pretzl B., Kim T.-S., Holle R., Eickholz P., 2008. Long-term results of guided tissue regeneration therapy with non-resorbable and bioabsorbable barriers. IV. A Case series of infrabony defects after 10 years. J. Periodontology, 79, 1491–1499. DOI: 10.1902/jop.2008.070571.
  • 26. Rodrigues M.I., Iemma A.F., 2014. Experimental design and process optimization. 1st ed. Boca Raton: CRC Press. DOI: 10.1201/b17848.
  • 27. Sebai A., Ruśkowski P., Bijak V., Gadomska-Gajadhur A., Kruk A., Synoradzki L., 2018. Direct synthesis of polylactide (PLA)-chlorphenesin prodrug and optimization thereof with the aid of DOE. Org. Process Res. Dev., 22, 21–26. DOI: 10.1021/acs.oprd.7b00266.
  • 28. Skoog S.A., Goering P.L., Narayan R.J., 2014. Stereolithography in tissue engineering. J. Mater. Sci. – Mater. Med., 25, 845–856. DOI: 10.1007/s10856-013-5107-y.
  • 29. SlomkowskiS.,2007.Biodegradablepolyestersfortissueengineering.Macromol.Symp.,253,47–58.DOI:10.1002/ masy.200750706.
  • 30. Sonje A., Chandra A., 2013. Comprehensive review on eudragit polymers. Int. Res. J. Pharm., 4, 71–74. DOI: 10.7897/2230-8407.04515.
  • 31. Szpalski C., Barr J., Wetterau M., Saadeh P.B., Warren S.M., 2010. Cranial bone defects: Current and future strategies. Neurosurg. Focus, 29, E8. DOI: 10.3171/2010.9.FOCUS10201.
  • 32. Trachtenberg J.E., Placone J.K., Smith B.T., Piard C.M., Santoro M., Scott D.W., Fisher J.P., Mikos A.G., 2016. Extrusion-based 3D printing of poly(propylene fumarate) in a full-factorial design. ACS Biomater. Sci. Eng., 2, 1771–1780. DOI: 10.1021/acsbiomaterials.6b00026.
  • 33. Wyszomierski K., Sawicki W., 2010. Eudragity – Rodzaje, zastosowanie, stabilność stałych postaci leku. Farmacja Polska, 66(3), 221–227.
  • 34. Xie Y., Lan X.-R., Bao R.-Y., Lei Y., Cao Z.-Q., Yang M.-B., Yang W., Wang Y.-B., 2018. High-performance porous polylactide stereocomplex crystallite scaffolds prepared by solution blending and salt leaching. Mater. Sci. Eng., C, 90, 602–609. DOI: 10.1016/j.msec.2018.05.023.
Uwagi
PL
Opracowanie rekordu w ramach umowy 509/P-DUN/2018 ze środków MNiSW przeznaczonych na działalność upowszechniającą naukę (2019).
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-493be873-46f8-4d0d-93b4-8898b637328c
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.