PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

Effective Iron-Accumulating Bacteria Isolated from Chemical Laboratory Drainage for Iron Removal

Treść / Zawartość
Identyfikatory
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
Improperly treated heavy metal wastewater discharged into water sources could cause a serious issue for the environment. The aim of this study was to bioaccumulate iron (Fe) using native bacteria isolated from the laboratory drainage water containing a high concentration of iron. The experiment was conducted in 250 mL conical flasks containing 150 mL Fe solution in concentrations of 25, 100, and 250 mg/L, respectively. Approximately 10% of bacteria inoculum was cultivated in each Fe concentration for 24 and 48 hours. The results showed that Pseudomonas hibiscicola was identified as an effective iron-accumulating species of bacteria. The species could remove Fe up to 82% (25 mg/L), 77.8% (100 mg/L) and 32% (250 mg/L). This promising result indicates that the native bacteria isolated from the environment pose a great potential for the remediation of wastewater containing iron.
Rocznik
Strony
187--194
Opis fizyczny
Bibliogr. 33 poz., rys., tab.
Twórcy
  • Research Centre for Sustainable Process Technology (CESPRO), Faculty of Engineering and Built Environment, Universiti Kebangsaan Malaysia, 43600 UKM, Bangi Selangor, Malaysia
  • Department of Chemical and Process Engineering, Faculty of Engineering and Built Environment, Universiti Kebangsaan Malaysia, 43600 UKM, Bangi Selangor, Malaysia
  • Department of Chemical and Process Engineering, Faculty of Engineering and Built Environment, Universiti Kebangsaan Malaysia, 43600 UKM, Bangi Selangor, Malaysia
  • Department of Chemical and Process Engineering, Faculty of Engineering and Built Environment, Universiti Kebangsaan Malaysia, 43600 UKM, Bangi Selangor, Malaysia
  • Department of Chemical and Process Engineering, Faculty of Engineering and Built Environment, Universiti Kebangsaan Malaysia, 43600 UKM, Bangi Selangor, Malaysia
  • Department of Chemical and Process Engineering, Faculty of Engineering and Built Environment, Universiti Kebangsaan Malaysia, 43600 UKM, Bangi Selangor, Malaysia
autor
  • Hebei University of Technology, School of Civil Engineering and Transportation, 5340 Xiping Road, Beichen District, Tianjin, 300401, China
Bibliografia
  • 1. Ahmad, M., and Malik A. 2012. Bioaccumulation of heavy metal by zinc resistant bacteria isolated from agricultural soils irrigated with wastewater. Bacteriol. J. 2, 12–21.
  • 2. Akpor, O.B., Ohiobor, G.O., and Olaolu, T.D. 2014. Heavy metal pollutants in wastewater effluents: Sources, effects and remediation. Adv. Biosci. Bioeng. 2, 37–43.
  • 3. Bakar, A.F.A., Barkawi, S.N.M., Hanafiah, M.M., Ern, L.K., and Halim, A.A. 2016. Heavy metals removal from automotive wastewater using chemically modified sand. Sains Malays. 45, 1509–1516.
  • 4. Bakar, A.F.A., Halim, A.A., and Hanafiah, M.M. 2015. Optimization of coagulation-flocculation process for automotive wastewater treatment using response surface methodology. Nat. Environ. Pollut. Tech. 14, 567–572.
  • 5. Basha, A.S., and Rajaganesh, K. 2014. Microbial bioremediation of heavy metals from textile industry dye effluents using isolated bacterial strains. Int. J. Curr. Microbiol. Appl. Sci. 3, 785–794.
  • 6. Cristina, K., Ferreira, C., Whasley, F., and Rosane, F. 2014. Bioaccumulation of Fe3+ by bacteria isolated from soil and fermented foods for use in bioremediation processes. Afr. J. Microbiol. Res. 8, 2513–2521.
  • 7. de Silva, A.A.L., de Carvalho, M.A.R., de Souza, S.A.L., Dias, P.M.T., da Silva Filho, R.G., de Meirelles Saramago, C.S., de Melo Bento, C.A., and Hofer, E. 2012. Heavy metal tolerance (Cr, Ag and Hg) in bacteria isolated from sewage. Braz. J. Microbiol. 43, 1620–1631.
  • 8. Diderichsen, B., and de Beor, A.S. 1991. On the safety of Bacillus subtilis and B. amyloliquefaciens: a review. Appl. Microbiol. Biotechnol. 36, 1–4.
  • 9. Dong, H., Jaisi, D.P., Kim, J., and Zhang, G. 2009. Microbe-clay mineral interaction. Am. Miner. 94, 1505–1519.
  • 10. George, B. 2009. Risks of copper and iron toxicity during aging in humans. Chem. Res. Toxicol. 223, 319–326.
  • 11. Ghosh, P., Samantha, A.N., and Ray, S. 2011. Reduction of COD and removal of Zn2+ from rayon industry wastewater by combined electro-Fenton treatment and chemical precipitation. Desalination 266, 213–217.
  • 12. Hanafiah, M.M., Zainuddin, M.F., Nizam, N.U.M., Halim, A.A., and Rasool, A. 2020. Phytoremediation of Aluminum and Iron from Industrial Wastewater Using Ipomoea aquatica and Centella asiatica. Appl. Sci.10, 3064.
  • 13. Hasan, H.A., Abdullah, S.R.S., Kofli, N.T., and Kamarudin, S.K. 2012. Isotherm equilibria of Mn2+ biosorption in drinking water treatment by locally isolated Bacillus species and sewage activated sludge. J. Environ. Manage. 111, 34–43.
  • 14. Hasan, H.A., Abdullah, S.R.S., Kofli, N.T., and Yeoh Shy Jay, Y.S. 2016. Interaction of environmental factors on simultaneous biosorption of lead and manganese ions by locally isolated Bacillus cereus. J. Ind. Eng. Chem. 37, 295–305.
  • 15. Karakagh, R.M., Chorom, M., Motamedi, H., Yuse Kalkhajeh, Y.K., and Oustan, S. 2012. Biosorption of Cd and Ni by inactivated bacteria isolated from agricultural soil treated with sewage sludge. Ecohydrol. Hydrobiol. 12, 191–198.
  • 16. Khan, M.I., Khisroon, M., Khan, A., Gulfam, N., Siraj, M., Zaidi, F., Ahmadullah, Abidullah, Fatima, S.H., Noreen, S., Hamidullah, Shah, Z.A., and Qadir, F. 2018. Bioaccumulation of heavy metals in water, sediments and tissues and their histopathological effects on Anodonta cygnea (Linea, 1876) in Kabul River, Khyber Paktunkhwa, Pakistan. Biomed. Res. Int. 1–10.
  • 17. Li, C., Xu, Y., Jiang, W., Dong, X., Wang, D., and Liu, B. 2013. Effect of NaCl on the heavy metal tolerance and bioaccumulation of Zygosaccharomyces rouxii and Saccharomyces cerevisiae. Bioresour. Technol. 143, 46–52.
  • 18. Liu, D., Dong, H., Bishop, M.E., Wang, H., Agrawal, A., Tritschler, S., Eberl, D.D., and Xie, S. 2011. Reduction of structural Fe(III) in nontronite by methanogen Methanosarcinabarkeri. Geochim. Cosmochim. Acta. 75, 6994–7010.
  • 19. Lovley, D.R. 2000. Environmental Microbe-Metal Interactions. Washington DC: ASM.
  • 20. Marschner, P., Crowley, D., and Rengel, Z. 2011). Rhizosphere interactions between microorganisms and plants govern iron and phosphorus acquisition along the root axis: model and research methods. Soil Biol. Biochem. 43, 883–894.
  • 21. Maurya, P.K., Malik, D.S., Yadav, K.K., Kumar, A., Kumar, S., and Kamyab, H. 2019. Bioaccumulation and potential sources of heavy metal contamination in fish species in River Ganga basin: Possible human health risks evaluation. Toxicol. Rep. 6, 472–481.
  • 22. Mauerhofer, L.M., Pappenreiter, P., Paulik, C., Seifert, A.H., Bernacchi, S., and Rittmann, S.K.M.R. 2019. Methods for quantification of growth and productivity in anaerobic microbiology and biotechnology. Folia Microbiol. 64, 321–360.
  • 23. Nanda, M., Kumar, V., and Sharma, D.K. 2019. Multimetal tolerance mechanisms in bacteria: The resistance strategies acquired by bacteria that can be exploited to ‘clean-up’ heavy metal contaminants from water. Aquat. Toxicol. 212, 1–10.
  • 24. Reilly, M., Cooley, A.P., Tito, D., Tassou, S.A., and Theodorou, M.K. 2019. Electrocoagulation treatment of dairy processing and slaughterhouse wastewaters. Energy Procedia 161, 343–351.
  • 25. Reis, K.C., Silva, C.F., Duarte, W.F., and Schwan, R.F. 2014. Bioaccumulation of Fe3+ by bacteria isolated from soil and fermented foods for use in bioremediation processes. Afr. J. Microbiol. Res. 8, 2513–2521.
  • 26. Scheid, D., Stubner, S., and Conrad, R. 2004. Identification of rice root associate nitrate, sulfate and ferric ion reducing bacteria during root composition. FEMS Microbiol. Ecol. 50, 101–110.
  • 27. Steward, K. 2019. Gram positive vs gram negative. https://www.technologynetworks.com/immunology/articles/gram-positive-vs-gram-negative-323007 [Accessed December 2, 2019].
  • 28. Stuckl, J.W., and Kostka, J.E. 2006. Microbial reduction of iron in smectite. Compt. Ren. Geoscl. 338, 468–475.
  • 29. Torbaghan, M.E., and Torghabeh, G.H.K. 2019. Biological removal of iron and sulfate from synthetic wastewater of cotton delinting factory by using halophilic sulfate-reducing bacteria. Heliyon 5, e02948.
  • 30. Velásquez, L., and Dussan, J. 2009. Biosorption and bioaccumulation of heavy metals on dead and living biomass of Bacillus sphaericus. J. Hazard. Mater. 167, 713–716.
  • 31. Vidali, M. (2001). Bioremediations: An overview. Pure Appl. Chem. 73, 1163–1172.
  • 32. Wang, Q.C., Liu, S.G., and Gao, H.P. 2019. Treatment of hydroxyquinone-containing wastewater using precipitation method with barium salt. Water Sci. Eng. 12, 55–61.
  • 33. Zainudin, F.M., Hasan, H.A., and Abdullah, S.R.S. 2016. Kesan kepekatan mangan terhadap biojerapan Mangan oleh pencilan Bacillus cereus tempatan. J. Kejuruteraan 28, 73–78.
Uwagi
Opracowanie rekordu ze środków MNiSW, umowa Nr 461252 w ramach programu "Społeczna odpowiedzialność nauki" - moduł: Popularyzacja nauki i promocja sportu (2021).
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-49355c91-84ad-47db-9689-d64c714d17ad
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.