PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

Detecting imprints of atmospheric waves in the Bering Sea with MODIS data

Autorzy
Identyfikatory
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
Satellite Moderate Resolution Imaging Spectroradiometer (MODIS) data of water leaving radiance of 859 nm with a spatial resolution of 250 m were used to investigate the impact of atmospheric gravity waves (AGWs), which manifested as stripes in clouds and on the sea surface. On the basis of an evaluation of the characteristics of AGWs and sea depth, it was shown that the surface stripes, or surface waves (SWs) were imprints of AGWs. Crests of SWs were like prolongations of cloud stripes on the combined radiance images testifying that SWs were shifted by minus a quarter of the period relative to AGWs.
Słowa kluczowe
Czasopismo
Rocznik
Strony
264--271
Opis fizyczny
Bibliogr. 22 poz., rys., wykr., fot.
Twórcy
  • P.P. Shirshov Institute of Oceanology, Russian Academy of Sciences, Moscow, Russia
Bibliografia
  • [1] Alpers, W., Brummer, B., 1994. Atmospheric boundary layer rolls observed by the synthetic aperture radar aboard the ERS-1 satellite. J. Geophys. Res. 99 (C6), 12613—12621.
  • [2] Alpers, W., Huang, W., 2011. On the discrimination of radar signatures of atmospheric gravity waves and oceanic internal waves on synthetic aperture radar images of the sea surface. IEEE Trans. Geosci. Remote Sens. 49 (3), 1114—1126.
  • [3] Da Silva, J., Magalhaes, J., 2009. Satellite observations of large atmospheric gravity waves in the Mozambique Channel. Int. J. Remote Sens. 30 (5), 1161—1182.
  • [4] Etling, D., Brown, R., 1993. Roll vortices in the planetary boundary layer: a review. Bound.-Lay. Meteorol. 65 (3), 215—248.
  • [5] Evdoshenko, M., 2008. Imprints of atmospheric events on the Caspian Sea surface by MODIS high resolution data. In: Proc. 9th Pan Ocean Remote Sensing Conf. (PORSEC 2008), Ocean Manifestation of Global Changes, 2—6 December 2008, Guangzhou, China, p. 42.
  • [6] Evdoshenko, M., 2009. Using of MODIS high resolution data for study of atmospheric processes by their imprints on the sea surface. In: Proc. 4th Workshop on Remote Sensing of the Coastal Zone, Coasts and Climate Conflicts, 18—20 June 2009, Chania, Crete, Greece.
  • [7] Franz, B., Werdell, P., Meister, G., Kwaitkowska, E., Bailey, S., Ahmad, Z., McClain, C., 2006. MODIS land bands for ocean remote sensing applications. In: Proc. Ocean Optics Conf. XVIII, 9—13 October 2006, Montreal, Canada.
  • [8] Gordon, H., Brown, O., Evans, R., Brown, J., Smith, R., Baker, K., Clark, D., 1988. A semi-analytical radiance model of ocean color. J. Geophys. Res. 93 (D9), 10909—10924.
  • [9] Gossard, E., Hooke, W., 1975. Waves in the Atmosphere: Atmospheric Infrasound and Gravity Waves — Their Generation and Propagation. Elsevier Sci. Publ., Amsterdam, 472 pp.
  • [10] Grimshaw, R., Ostrovsky, L., Shrira, V., Spepanyants, Yu., 1998. Long nonlinear surface and internal gravity waves in a rotating ocean. Surv. Geophys. 19 (4), 289—338.
  • [11] Hale, G., Querry, M., 1973. Optical constants of water in the 200-nm to 200-m wavelength region. Appl. Optics 12 (3), 555—563.
  • [12] Kozlov, I., Romanenkov, D., Zimin, A., Chapron, B., 2014. SAR observing large-scale nonlinear internal waves in the White Sea. Remote Sens. Environ. 147, 99—107.
  • [13] Levin, B., Nosov, M., 2009. Physics of Tsunamis. Springer Science & Business Media V.M., New York, 327 pp.
  • [14] Li, X., Dong, X., Clemente-Colón, P., Pichel, W., Friedman, K., 2004. Synthetic aperture radar observation of the sea surface imprints of upstream atmospheric solitons generated by flow impeded by an island. J. Geophys. Res. 109, C02016.
  • [15] Li, X., Zheng, W., Yang, X., Li, Z., Pichel, W., 2011. Sea surface imprints of coastal mountain lee waves imaged by synthetic aperture radar. J. Geophys. Res. 116, C02014.
  • [16] Li, X., Zheng, W., Zou, C.-Z., Pichel, W., 2008. A SAR observation and numerical study on ocean surface imprints of atmospheric vortex streets. Sensors 8 (5), 3321—3334.
  • [17] Liu, A. Q., Moore, G. W. K., Tsuboki, K., Renfrew, I. A., 2004. A highresolution simulation of convective roll clouds during a cold-air outbreak. Geophys. Res. Lett. 31, L03101.
  • [18] Pegau, W., Gray, D., Zaneveld, J., 1997. Absorption and attenuation of visible and near-infrared light in water: dependence on temperature and salinity. Appl. Optics 36 (24), 6035—6046.
  • [19] Vachon, P. W., Johannessen, O. M., Johannessen, J., 1994. An ERS 1 synthetic aperture radar image of atmospheric lee waves. J. Geophys. Res. 99 (11), 22483—22490.
  • [20] Valenzuela, G. R., 1978. Theories for the interaction of electromagnetic and oceanic waves: a review. Bound.-Lay. Meteorol. 13 (1), 61—85.
  • [21] Weigen, X., Xilin, G., Li, X., 2008. Coastally trapped atmospheric gravity waves on SAR, AVHRR and MODIS images. Int. J. Remote Sens. 29 (6), 1621—1634.
  • [22] Zheng, Q., Yan, X.-H., Klemas, V., Ho, C.-R., Kuo, N.-J., Wang, Z., 1998. Coastal lee waves on ERS-1 SAR images. J. Geophys. Res. 103 (C4), 7979—7993.
Uwagi
Opracowanie ze środków MNiSW w ramach umowy 812/P-DUN/2016 na działalność upowszechniającą naukę.
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-49346079-6861-4601-8f2d-892c7cf7b4db
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.