PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

A new design of a photonic crystal fiber with a beam shaping effect and flexible management of dispersion and confinement loss

Autorzy
Treść / Zawartość
Identyfikatory
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
A new design of a guiding-index photonic crystal fiber which possesses a beam shaping effect and flexible control of dispersion has been proposed in this paper. It can shape a Gaussian beam into a circular hollow beam with certain dimension, which can be used in optical communication systems with a Cassegrain antenna to improve transmission efficiency by avoiding the loss of energy caused by the subreflector center reflection. In addition, its dispersion and confinement loss can be changed in a broad range by slightly adjusting structural parameters under condition that the hollow beam dimension remains about the same. Fairly practical properties, zero dispersion or flattened dispersion, can be obtained when structural parameters are set appropriately. A series of models with different parameters are analyzed and compared. Results of numerical simulation show that the ultra-low dispersion of 1.802 ps/km/nm can be obtained when λ = 1.31 μm. Several modest design parameters are given as well.
Czasopismo
Rocznik
Strony
375--387
Opis fizyczny
Bibliogr. 28 poz., rys., tab., wykr.
Twórcy
autor
  • School of Physical Electronics, University of Electronic, Science and Technology of China, Chengdu 610054, China
autor
  • School of Physical Electronics, University of Electronic, Science and Technology of China, Chengdu 610054, China
autor
  • School of Physical Electronics, University of Electronic, Science and Technology of China, Chengdu 610054, China
autor
  • School of Physical Electronics, University of Electronic, Science and Technology of China, Chengdu 610054, China
Bibliografia
  • [1] KNIGHT J.C., BIRKS T.A., RUSSELL P.S.J., ATKIN D.M., All-silica single-mode optical fiber with photonic crystal cladding, Optics Letters 21(19), 1996, pp. 1547–1549.
  • [2] BIRKS T.A., KNIGHT J.C., RUSSELL P.S.J., Endlessly single-mode photonic crystal fiber, Optics Letters 22(13), 1997, pp. 961–963.
  • [3] BIRKS T.A., MOGILEVTSEV D., KNIGHT J.C., RUSSELL P.S.J., Dispersion compensation using single- -material fibers, IEEE Photonics Technology Letters 11(6), 1999, pp. 674–676.
  • [4] FERRANDO A., SILVESTRE E., MIRET J.J., ANDRÉS P., Nearly zero ultraflattened dispersion in photonic crystal fibers, Optics Letters 25(11), 2000, pp. 790–792.
  • [5] ORTIGOSA-BLANCH A., KNIGHT J.C., WADSWORTH W.J., ARRIAGA J., MANGAN B.J., BIRKS T.A., RUSSELL P.S.J., Highly birefringent photonic crystal fibers, Optics Letters 25(18), 2000, pp. 1325–1327.
  • [6] HANSEN T.P., BROENG J., LIBORI S.E.B., KNUDSEN E., BJARKLEV A., JENSEN J.R., SIMONSEN H., Highly birefringent index-guiding photonic crystal fibers, IEEE Photonics Technology Letters 13(6), 2001, pp. 588–590.
  • [7] BRODERICK N.G.R., MONRO T.M., BENNETT P.J., RICHARDSON D.J., Nonlinearity in holey optical fibers: measurement and future opportunities, Optics Letters 24(20), 1999, pp. 1395–1397.
  • [8] MORTENSEN N.A., Effective area of photonic crystal fibers, Optics Express 10(7), 2002, pp. 341–348.
  • [9] RANKA J.K., WINDELER R.S., STENTZ A.J., Visible continuum generation in air-silica microstructure optical fibers with anomalous dispersion at 800 nm, Optics Letters 25(1), 2000, pp. 25–27.
  • [10] EGGLETON B.J., KERBAGE C., WESTBROOK P.S., WINDELER R.S., HALE A., Microstructured optical fiber devices, Optics Express 9(13), 2001, pp. 698–713.
  • [11] FARIBORZ MOUSAVI MADANI, KAZURO KIKUCHI, Design theory of long-distance WDM dispersionmanaged transmission system, Journal of Lightwave Technology 17(8), 1999, pp. 1326–1335.
  • [12] HANSEN K.P., Dispersion flattened hybrid-core nonlinear photonic crystal fiber, Optics Express 11(13), 2003, pp. 1503–1509.
  • [13] HOO Y.L., JIN W., JU J., HO H.L., WANG D.N., Design of photonic crystal fibers with ultra-low, ultra- -flattened chromatic dispersion, Optics Communications 242(4–6), 2004, pp. 327–332.
  • [14] KRISHNA MOHAN GUNDU, M. KOLESIK, J.V. MOLONEY, KYUNG SHIK LEE, Ultra-flattened-dispersion selectively liquid-filled photonic crystal fibers, Optics Express 14(15), 2006, pp. 6870–6878.
  • [15] JINGYUAN WANGA, CHUN JIANGA, WEISHENG HUA, MINGYI GAO, Modified design of photonic crystal fibers with flattened dispersion, Optics and Laser Technology 38(3), 2006, pp. 169–172.
  • [16] ZHAO-LUN LIUA, XIAO-DONG LIU, SHU-GUANG LI, GUI-YAO ZHOU, WEI WANG, LAN-TIAN HOU, A broadband ultra flattened chromatic dispersion microstructured fiber for optical communications, Optics Communications 272(1), 2007, pp. 92–96.
  • [17] RAKHI BHATTACHARYA, SWAPAN KONAR, Dual-core photonic crystal fibers for dispersion compensation, Journal of Nanophotonics 6(1), 2012, article 063520.
  • [18] SCADUTO L.C.N., SASIAN J., STEFANI M.A., JARBAS CAIADO DE CASTRO NETO, Two-mirror telescope design with third-order coma insensitive to decenter misalignment, Optics Express 21(6), 2013, pp. 6851–6865.
  • [19] XIAO-XIA ZHANG, SHU-GUANG LIN, SHUO LIU, YING DU, XING-PING ZHU, Generation of hollow beam from photonic crystal fiber with an azimuthally polarized mode, Optics Communications 285(24), 2012, pp. 5079–5084.
  • [20] KNIGHT J.C., Photonic crystal fibers, Nature 424, 2003, pp. 847–851.
  • [21] SAITOH K., FLOROUS N., KOSHIBA M., Ultra-flattened chromatic dispersion controllability using a defected-core photonic crystal fiber with low confinement losses, Optics Express 13(21), 2005, pp. 8365–8371.
  • [22] SHUGUANG LI, XIAOXIA ZHANG, AGRAWAL G.P., Characteristics of photonic crystal fibers designed with an annular core using a single material, Applied Optics 52(13), 2013, pp. 3088–3093.
  • [23] FEROZA BEGUM, YOSHINORI NAMIHIRA, S.M. ABDUR RAZZAK, SHUBI KAIJAGE, NGUYEN HOANG HAI, TATSUYA KINJO, KAZUYA MIYAGI, NIANYU ZOU, Design and analysis of novel highly nonlinear photonic crystal fibers with ultra-flattened chromatic dispersion, Optics Communications 282(7), 2009, pp. 1416–1421.
  • [24] DAVIDSON D., Optical-Fiber Transmission, [Ed.] Basch E.E.B., Howard W. Sams & Co, 1987.
  • [25] CHAUDHARI C., SUZUKI T., OHISHI Y., Chalcogenide core photonic crystal fibers for zero chromatic dispersion in the C-band, Optical Fiber Communication Conference, OSA Technical Digest (CD), 2009, paper OTuC4.
  • [26] KUHLMEY B.T., NGUYEN H.C., STEEL M.J., EGGLETON B.J., Confinement loss in adiabatic photonic crystal fiber tapers, Journal of the Optical Society of America B 23(9), 2006, pp. 1965–1974.
  • [27] DEROSE G.A., LIN ZHU, POON J.K.S., YARIV A., SCHERER A., Electron-beam lithography techniques for micro- and nano-scale surface structure current injection lasers, CLEO, 2007, CThN7.
  • [28] SANABIA J.E., BURCHAM K.E., KLINGFUS J., PIASZENSKI G., KAHL M., JEDE R., Fixed beam moving stage electron beam lithography of waveguide coupling device structures, CLEO, 2012, CM4L.3.
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-4932c311-e983-4878-b60c-99504e8a64d4
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.