PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

Unique micro system stimulator with high data rate and efficient power recovery circuit

Wybrane pełne teksty z tego czasopisma
Identyfikatory
Warianty tytułu
PL
Mikrosystem sty,mulatora biomedycznego o dużej szybkości przesyłu danych i skutecznym układzie zasilania
Języki publikacji
EN
Abstrakty
EN
This paper present an efficient micro-system stimulator to transfer data and power in biomedical implanted device by using Amplitude shift keying (ASK) modulation technique. The proposed system operates with low frequency 6.78MHz accordance to the industrial-scientific-medical (ISM) bands to avoid the biological tissue damage. The system design include new ASK modulator, class-E power amplifier, half wave rectifier, voltage regulator (LDO) and new ASK demodulator structure without passive elements to transfer 500Kb/s of data with modulation index 12.5%. The efficient inductive coupling link with 74.47% of efficiency is driven by class-E power amplifier with high efficiency up to 94.5%. Adequate and stable 1.8V DC are generated by the modified rectifier and voltage regulator to power the implanted electronics which occupies small area and does not have a thermal protection circuit or passive elements. The proposed ASK demodulator structure is developed to collect a synchronised demodulated signal that has minimum error without using delay-locked loops (DLL) circuits and clock recovery circuit. This system designed by using OrCAD Pspice 16.6 software, which employed 0.35 μm CMOS technology as a basis.
PL
W artykule opisano mikrosystem używany w stymulatorach biomedycznych przeznaczony dpo transferu danych i zasilania. System wykorzystuje kodowanie ASK z częstiotliwością 6.78 MHz. System składa się z modulatora ASK, wzmacniacza mocy klasy E, prostownika, regulatora napięcia LDO I dempodulatora ASK.
Rocznik
Strony
213--220
Opis fizyczny
Bibliogr. 37 poz., rys., tab., wykr.
Twórcy
  • Student. Department of Electrical and Electronic Engineering, Faculty of Engineering, University Putra Malaysia 43400 UPM Serdang, Selangor Darul Ehsan. Malaysia
  • Department of Electrical and Electronic Engineering, Faculty of Engineering Universiti Putra Malaysia 43400 UPM Serdang, Selangor Darul Ehsan. Malaysia
autor
  • Department of Electrical and Electronic Engineering, Faculty of Engineering Universiti Putra Malaysia 43400 UPM Serdang, Selangor Darul Ehsan. Malaysia
autor
  • Department of Electrical Engineering, University of Technology- Iraq, Baghdad
Bibliografia
  • [1] G. Lazzi, "Thermal effects of bioimplants," Engineering in Medicine and Biology Magazine, IEEE, vol. 24, pp. 75-81, 2005.
  • [2] M. A. Hannan, S. M. Abbas, S. A. Samad, and A. Hussain, "Modulation techniques for biomedical implanted devices and their challenges," Sensors, vol. 12, pp. 297-319, 2011.
  • [3] A. S. Walton and H. Krum, "The Heartpod implantable heart failure therapy system," Heart, Lung and Circulation, vol. 14, pp. S31-S33, 2005.
  • [4] S. Atluri and M. Ghovanloo, "A wideband power-efficient inductive wireless link for implantable microelectronic devices using multiple carriers," in Circuits and Systems, 2006. ISCAS 2006. Proceedings. 2006 IEEE International Symposium on, 2006, pp. 4 pp.-1134.
  • [5] K. Chen-Hua and T. Kea-Tiong, "Wireless power and data transmission with ASK demodulator and power regulator for a biomedical implantable SOC," in Life Science Systems and Applications Workshop, 2009. LiSSA 2009. IEEE/NIH, 2009, pp. 179-182.
  • [6] W. Chua-Chin, C. Chih-Lin, K. Ron-Chi, and D. Shmilovitz, "Self-Sampled All-MOS ASK Demodulator for Lower ISM Band Applications," Circuits and Systems II: Express Briefs, IEEE Transactions on, vol. 57, pp. 265-269, 2010.
  • [7] D. Daoud, M. Ghorbel, A. Ben Hamida, and J. Tomas, "Fully integrated CMOS data and clock recovery for wireless biomedical implants," in Systems, Signals and Devices (SSD), 2011 8th International Multi-Conference on, 2011, pp. 1-5.
  • [8] B. P. Wilkerson, K. Tae-Ho, and K. Jin-Ku, "Low-power noncoherent data and power recovery circuit for implantable biomedical devices," in SoC Design Conference (ISOCC), 2011 International, 2011, pp. 171-174.
  • [9] S. MUTASHAR, M. A. HANNAN, S. A. SAMAD, and A. HUSSAIN, "DEVELOPMENT OF BIO-IMPLANTED MICROSYSTEM WITH SELF-RECOVERY ASK DEMODULATOR FOR TRANSCUTANEOUS APPLICATIONS," Journal of Mechanics in Medicine and Biology, vol. 14, p. 1450062, 2014.
  • [10] M. Sawan, H. Yamu, and J. Coulombe, "Wireless smart implants dedicated to multichannel monitoring and microstimulation," Circuits and Systems Magazine, IEEE, vol. 5, pp. 21-39, 2005.
  • [11] S. M. Abbas, M. Hannan, and A. Salina, "Efficient Class-E design for inductive powering wireless biotelemetry applications," in Biomedical Engineering (ICoBE), 2012 International Conference on, 2012, pp. 445-449.
  • [12] "IEEE Standard for Safety Levels With Respect to Human Exposure to Radio Frequency Electromagnetic Fields, 3 kHz to 300 GHz," IEEE Std C95.1, 1999 Edition, p. i, 1999.
  • [13] F. H. Raab, "Effects of circuit variations on the class E tuned power amplifier," Solid-State Circuits, IEEE Journal of, vol. 13, pp. 239-247, 1978.
  • [14] G. B. Hmida, H. Ghariani, and M. Samet, "Design of wireless power and data transmission circuits for implantable biomicrosystem," Biotechnology, vol. 6, pp. 153-164, 2007.
  • [15] S. Mutashar, M. Hannan, S. A. Samad, and A. Hussain, "Efficient data and power transfer for bio-implanted devices based on ASK modulation techniques," Journal of Mechanics in Medicine and Biology, vol. 12, 2012.
  • [16] T. H. Lee, "The design of CMOS radio-frequency integrated circuits, 2nd edition," Communications Engineer, vol. 2, pp. 47- 47, 2004.
  • [17] T. Suetsugu and M. K. Kazimierczuk, "Analysis and design of class E amplifier with shunt capacitance composed of nonlinear and linear capacitances," Circuits and Systems I: Regular Papers, IEEE Transactions on, vol. 51, pp. 1261-1268, 2004.
  • [18] H. Sekiya, Y. Arifuku, H. Hase, L. Jianming, and T. Yahagi, "Design of class E amplifier with any output Q and nonlinear capacitance on MOSFET," in Circuit Theory and Design, 2005. Proceedings of the 2005 European Conference on, 2005, pp. III/105-III/108 vol. 3.
  • [19] S. Mutashar, M. A. Hannan, S. A. Samad, and A. Hussain, "Analysis and Optimization of Spiral Circular Inductive Coupling Link for Bio-Implanted Applications on Air and within Human Tissue," Sensors, vol. 14, pp. 11522-11541, 2014.
  • [20] F. Noor and M. Duffy, "Amplifier design for a biomedical inductive power system," in Signals and Systems Conference (ISSC 2010), IET Irish, 2010, pp. 169-174.
  • [21] M. Qingyun, M. R. Haider, Y. Song, and S. K. Islam, "Poweroscillator based high efficiency inductive power-link for transcutaneous power transmission," in Circuits and Systems (MWSCAS), 2010 53rd IEEE International Midwest Symposium on, 2010, pp. 537-540.
  • [22] S. Agneessens, P. Van Torre, E. Tanghe, G. Vermeeren, W. Joseph, and H. Rogier, "On-Body Wearable Repeater as a Data Link Relay for In-Body Wireless Implants," Antennas and Wireless Propagation Letters, IEEE, vol. 11, pp. 1714-1717, 2012.
  • [23] S. MUTASHAR and M. A. HANNAN, "Efficient Low-Power Recovery Circuits for Bio-implanted Micro-Sensors," Przeglad Elektrotechniczny (ERJ), vol. 89, pp. 15-18, 2013.
  • [24] C. S. A. Gong, "An active‐diode‐based CMOS rectifier for biomedical power harvesting applications," International Journal of Circuit Theory and Applications, vol. 39, pp. 439- 449, 2011.
  • [25] J. Yi, W. H. Ki, and C. Y. Tsui, "Analysis and Design Strategy of UHF Micro-Power CMOS Rectifiers for Micro-Sensor and RFID Applications," IEEE Transactions on Circuits and Systems I: Regular Papers, vol. 54, pp. 153-166, 2007.
  • [26] A. M. Sodagar, K. D. Wise, and K. Najafi, "An interface chip for power and bidirectional data telemetry in an implantable cochlear microsystem," in Biomedical Circuits and Systems Conference, 2006. BioCAS 2006. IEEE, 2006, pp. 1-4.
  • [27] A. M. Sodagar and K. Najafi, "Extremely-wide-range supplyindependent CMOS voltage references for telemetry-powering applications," Analog Integrated Circuits and Signal Processing, vol. 46, pp. 253-261, 2006.
  • [28] W. Chua-Chin, H. Ya-Hsin, U. F. Chio, and H. Yu-Tzu, "A Cless ASK demodulator for implantable neural interfacing chips," in Circuits and Systems, 2004. ISCAS '04. Proceedings of the 2004 International Symposium on, 2004, pp. IV-57-60 Vol.4. [29] L. Tzung-Je, L. Ching-Li, C. Yan-Jhih, H. Chi-Chun, and W. Chua-Chin, "All-MOS ASK Demodulator for Low-Frequency Applications," Circuits and Systems II: Express Briefs, IEEE Transactions on, vol. 55, pp. 474-478, 2008.
  • [30] A. Djemouai and M. Sawan, "Integrated ASK demodulator dedicated to implantable electronic devices," in Circuits and Systems, 2003 IEEE 46th Midwest Symposium on, 2003, pp. 80-83 Vol. 1.
  • [31] D. Mian, Z. Chun, W. Zhihua, and L. Dongmei, "A neurostimuluschip with telemetry unit for cochlear implant," in Biomedical Circuits and Systems, 2004 IEEE International Workshop on, 2004, pp. S1/3/INV-S1/39-12.
  • [32] L. Shuenn-Yuh and L. Shyh-Chyang, "An implantable wireless bidirectional communication microstimulator for neuromuscular stimulation," IEEE Transactions on Circuits and Systems I: Regular Papers, vol. 52, pp. 2526-2538, 2005.
  • [33] B. Smith, T. Zhengnian, M. W. Johnson, S. Pourmehdi, M. M. Gazdik, J. R. Buckett, et al., "An externally powered, multichannel, implantable stimulator-telemeter for control of paralyzed muscle," Biomedical Engineering, IEEE Transactions on, vol. 45, pp. 463-475, 1998.
  • [34] L. Wentai, K. Vichienchom, M. Clements, S. C. DeMarco, C. Hughes, E. McGucken, et al., "A neuro-stimulus chip with telemetry unit for retinal prosthetic device," Solid-State Circuits, IEEE Journal of, vol. 35, pp. 1487-1497, 2000.
  • [35] G. Gudnason, "A low-power ASK demodulator for inductively coupled implantable electronics," in Solid-State Circuits Conference, 2000. ESSCIRC '00. Proceedings of the 26rd European, 2000, pp. 385-388.
  • [36] L. Hongge and L. Wenshi, "A High-Performance ASK Demodulator for Wireless Recovery System," in Wireless Communications, Networking and Mobile Computing, 2007. WiCom 2007. International Conference on, 2007, pp. 1204- 1207.
  • [37] C.-C. Wang, T.-J. Lee, U. Chio, Y.-T. Hsiao, and J.-J. J. Chen, "A 570-kbps ASK demodulator without external capacitors for low-frequency wireless bio-implants," Microelectronics Journal, vol. 39, pp. 130-136, 2008.
Uwagi
Opracowanie ze środków MNiSW w ramach umowy 812/P-DUN/2016 na działalność upowszechniającą naukę.
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-4931094e-7f81-4b94-8f89-d332c3af53a1
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.