Tytuł artykułu
Autorzy
Wybrane pełne teksty z tego czasopisma
Identyfikatory
Warianty tytułu
Języki publikacji
Abstrakty
The characterization of the various rock types through petrophysical data analysis is essential for comprehending geological processes and enhancing the efficacy of geophysical approaches aimed at mineralization zones. In the present study, a Fuzzy C-Means (FCM) clustering algorithm was employed to automatically classify lithounits within the western sector of the North Singhbhum Mobile Belt based on the petrophysical properties. Laboratory measurements of 326 rock samples from the study area show a wide range of density (~2350-3150 kg/m3) and magnetic susceptibility (10-5 SI to 10-1 SI) values. Further FCM analysis reveals three distinct clusters: (i) cluster 1 displays high density and low magnetic susceptibility responses and comprises majorly metabasic, phyllite, and mica schist rocks, (ii) cluster 2 shows low density and low magnetic susceptibility characteristics and contains mainly metasedimentary rocks (phyllite, quartzite, and mica schist) and (iii) cluster 3 also primarily encompasses metasedimentary rocks, but it displays the low density and high magnetic susceptibility characteristics. Overlap of rock types in different clusters probably indicates the influence of secondary geological processes on the petrophysical measurements such as metamorphism, alteration, and weathering, which is also supported by the petrographical studies. Overall, the present study demonstrates the potential utility of the FCM algorithm for automatic lithology classification and inferring the associated geological processes from the petrophysical measurements. Furthermore, the correlation between the geophysical and petrophysical clusters highlights the role of petrophysical information in the automatic geological/mineral mapping. However, the complexity in cluster attributes on a detailed scale suggests that future studies in the NSMB should focus on comprehensive multi-parameter petrophysical and geochemical measurements. This approach will help in developing better strategies for 3D geophysical data inversion and resolve the complexities in petrophysical data interpretation.
Wydawca
Czasopismo
Rocznik
Tom
Strony
439--455
Opis fizyczny
Bibliogr. 60 poz.
Twórcy
autor
- Department of Applied Geophysics, Indian Institute of Technology (Indian School of Mines) Dhanbad, Dhanbad, Jharkhand 826004, India
autor
- Department of Applied Geophysics, Indian Institute of Technology (Indian School of Mines) Dhanbad, Dhanbad, Jharkhand 826004, India
autor
- Department of Applied Geophysics, Indian Institute of Technology (Indian School of Mines) Dhanbad, Dhanbad, Jharkhand 826004, India
- Department of Earth Sciences, Indian Institute of Technology Bombay, Mumbai 400076, India
autor
- Department of Applied Geophysics, Indian Institute of Technology (Indian School of Mines) Dhanbad, Dhanbad, Jharkhand 826004, India
autor
- Department of Applied Geology, Indian Institute of Technology (Indian School of Mines) Dhanbad, Dhanbad, Jharkhand 826004, India
autor
- Department of Applied Geology, Indian Institute of Technology (Indian School of Mines) Dhanbad, Dhanbad, Jharkhand 826004, India
Bibliografia
- 1. Alqahtani F, Ehsan M, Aboud E, Abdulfarraj M, El-Masry N (2023) Integrated approach using petrophysical, gravity, and magnetic data to evaluate the geothermal resources at the Rahat Volcanic Field, Saudi Arabia. Front Earth Sci 11:1135635
- 2. Arasada RC, Srinivasa Rao G, Anand R (2022) Crustal architecture of North Singhbhum Mobile Belt, Eastern Indian Shield: Constraints from two-dimensional and three-dimensional modelling of Bouguer gravity and aeromagnetic data. Geol J 57(7):2668-2685
- 3. Barla A, Singh S, Chakravarti R (2020) Genesis of metasomatic gold mineralization in the Pahardiha- Rungikocha gold deposits, eastern India: Constraints from trace elements signatures in chromite-cored magnetite and bulk geochemistry. Ore Geol Rev 121:103482
- 4. Bezdek JC (1981) Pattern recognition with fuzzy objective function algorithms. Plenum Press
- 5. Bezdek JC, Ehrlich R, Full W (1984) FCM: the fuzzy c-means clustering algorithm. Comput Geosci 10:191-203
- 6. Bhattacharya S (2021) A primer on machine learning in subsurface geosciences. Springer
- 7. Bhattacharya HN, Mahapatra S (2008) Evolution of the Proterozoic rift margin sediments—North Singhbhum Mobile Belt, Jharkhand- Orissa, India. Precambrian Res 162(1-2):302-316
- 8. Caliński T, Harabasz J (1974) A dendrite method for cluster analysis. Commun Stat - Theory Methods 3:1-27
- 9. Chaudhuri BK, Roy RK (2001) Gold mineralization in Eastern India- Status review and a look to the future. Geol Surv India Spec Publ 58:29-57
- 10. Chen H, Tao C, Revil A, Zhu Z, Zhou J, Wu T, Deng X (2021) Induced Polarization and Magnetic Responses of Serpentinized Ultramafic Rocks From Mid-Ocean Ridges. J Geophys Res Solid Earth 126(12):e2021JB022915
- 11. Chatterjee P, De S, Ranaivoson M, Mazumder R, Arima M (2013) A review of the "•1600 Ma sedimentation, volcanism, and tectonothermal events in the Singhbhum craton, Eastern India. Geosci Front 4(3):277-287
- 12. Clark DA (1997) Magnetic petrophysics and magnetic petrology: aids to geological interpretation of magnetic surveys. AGSO J Aust Geol Geophys 17(2):83-103
- 13. De S, Mallik L, Mazumder R, Chatterjee P, Ohta T, Saito S, Chiarenzelli J (2016) Sedimentation history of the Paleoproterozoic Singhbhum Group of rocks, eastern India and its implications. Earth-Sci Rev 163:141-161
- 14. Dentith M, Adams C, Bourne BT (2017) Petrophysics and exploration targeting: Best practice and applications. In: Wyche S, Witt WK (eds) TARGET 2017. Perth, Australia: abstracts: Geological Survey of Western Australia, Record 2017/6, Accessed online from Geoconferences WA (geoconferences.org.au), pp 37-39
- 15. Dentith M, Enkin RJ, Morris W, Adams C, Bourne B (2020) Petrophysics and mineral exploration: a workflow for data analysis and a new interpretation framework. Geophys Prospect 68:178-199
- 16. Dentith M, Mudge ST (2014) Geophysics for the mineral exploration geoscientist. Cambridge University Press, Cambridge
- 17. Dey A, Karmakar S, Mukherjee S, Sanyal S, Dutta U, Sengupta P (2019) High pressure metamorphism of mafic granulites from the Chotanagpur Granite Gneiss Complex, India: evidence for collisional tectonics during assembly of Rodinia. J Geodyn 129:24-43
- 18. Dunn JC (1973) A fuzzy relative of the ISODATA process and its use in detecting compact well-separated clusters. J Cybern 3:32-57
- 19. Enkin R (2014) The rock physical property database of British Columbia, and the distinct petrophysical signature of the Chilcotin basalts. Can J Earth Sci 51:327-338
- 20. Enkin RJ (2018) The Canadian rock physical property database: first public release. GSC Open File 8460:60p
- 21. Enkin RJ, Hamilton TS, Morris WA (2020) The Henkel petrophysical plot: mineralogy and lithology from physical properties. Geochem Geophys Geosyst 21(1):e2019GC008818
- 22. Goldschmidt VM (1937) The principles of distribution of chemical elements in minerals and rocks. The seventh Hugo Muller Lecture, delivered before the Chemical Society on March 17th, 1937. J Chem Soc 655-673
- 23. Grant FS (1984a) Aeromagnetics, geology, and ore environments, I. Magnetite in igneous, sedimentary and metamorphic rocks: an overview. Geoexploration 23:303-333
- 24. Grant FS (1984b) Aeromagnetics, geology, and ore environments, II.
- 25. Magnetite and ore environments. Geoexploration 23:335-362
- 26. Hashemi SE, Gholian-Jouybari F, Hajiaghaei-Keshteli M (2023) A fuzzy C-means algorithm for optimizing data clustering. Expert Syst Appl 227:120377
- 27. Henkel H (1976) Studies of density and magnetic properties of rocks from northern Sweden. Pure Appl Geophys 114:235-249
- 28. Henkel H (1991) Petrophysical properties (density and magnetization) of rocks from the northern part of the Baltic Shield. Tectonophysics 192(1-2):1-19
- 29. Henkel H (1994) Standard diagrams of magnetic properties and density-a tool for understanding magnetic petrology. J Appl Geophys 32(1):43-53
- 30. Horo D, Pal SK, Singh S, Srivastava S (2020) Combined self-potential, electrical resistivity tomography and induced polarisation for mapping of gold prospective zones over a part of Babaikundi-Birgaon Axis, North Singhbhum Mobile Belt. India Explor Geophys 51(5):507-522
- 31. Jha V, Singh S, Venkatesh AS (2015) Invisible gold occurrence within the quartz reef pyrite of Babaikundi area, North Singhbhum fold-and-thrust belt, Eastern Indian Shield: Evidence from petrographic, SEM and EPMA studies. Ore Geol Rev 65:426-432
- 32. Kamm J, Lundin IA, Bastani M, Sadeghi M, Pedersen LB (2015) Joint inversion of gravity, magnetic, and petrophysical data—A case study from a gabbro intrusion in Boden. Sweden Geophysics 80(5):B131-B152
- 33. Kumar S, Arasada RC, Rao GS (2023a) Multi-scale potential field data integration using fuzzy C-means clustering for automated geological mapping of North Singhbhum Mobile Belt. Eastern Indian Craton Min 13(8):1014
- 34. Kumar S, Arasada RC, Rao GS, Singh S (2023b) 3D inversion of gravity and aeromagnetic data over the Western North Singhbhum Mobile Belt, Eastern Indian shield, for delineating prospective sulfide (Au) mineralization zones. Nat Resour Res 32(5):1917-1940
- 35. Madhusudan IC, Maiti SK, De MK, Singh DPC (1999) Geophysical studies of Tamar gold prospect, Babaikundi-Birgaon Sector. Dist Ranchi Bihar Indian Min 53(1&2):37-44
- 36. Mazumder R, De S, Ohta T, Flannery D, Mallik L, Chaudhury T, Chatterjee P, Ranaivoson MA, Arima M (2015) Palaeo-Mesoproterozoic sedimentation and tectonics of the
- 37. Singhbhum Craton, eastern India, and implications for global and craton-specific geological events. Geol Soc London Mem 43(1):139-149
- 38. Novak V, Perfilieva I, Mockor J (1999) Mathematical Principles of Fuzzy Logic. Kluwer Academic Publishers
- 39. Olierook HK, Clark C, Reddy SM, Mazumder R, Jourdan F, Evans NJ (2019) Evolution of the Singhbhum Craton and supracrustal provinces from age, isotopic and chemical constraints. Earth-Sci Rev 193:237-259
- 40. Paasche H, Eberle DG (2009) Rapid integration of large airborne geophysical data suites using a fuzzy partitioning cluster algorithm: a tool for geological mapping and mineral exploration targeting. Explor Geophys 40(3):277-287
- 41. Paasche H, Eberle D (2011) Automated compilation of pseudolithology maps from geophysical data sets: a comparison of Gustafson-Kessel and fuzzy c-means cluster algorithms. Explor Geophys 42(4):275-285
- 42. Paasche H, Tronicke J, Dietrich P (2010) Automated integration of partially colocated models: subsurface zonation using a modified fuzzy c-means cluster analysis algorithm. Geophysics 75(3):P11-P22
- 43. Paasche H, Tronicke J, Holliger K, Green AG, Maurer H (2006) Integration of diverse physical-property models: subsurface zonation and petrophysical parameter estimation based on fuzzy c-means cluster analyses. Geophysics 71(3):H33-H44
- 44. Rousseeuw PJ (1987) Silhouettes: a graphical aid to the interpretation and validation of cluster analysis. Comput Appl Math 20:53-65
- 45. Ruotoistenmaki T, Birungi NR (2015) Petrophysical database of Uganda. J Afr Earth Sci 106:17-39
- 46. Sanyal S, Sengupta P (2012) Metamorphic evolution of the Chotanagpur granite gneiss complex of the east Indian shield: current status. Geol Soc Lond Spec Publ 365(1):117-145
- 47. Sesha Sai VV (1998) A report on exploration for gold in Babaikundi - Birgaon sector, district Ranchi, Bihar. Unpub. prog. Rep of GSI F.S. 1995-96. Report no- UE13282, Geological Survey of India, Ranchi
- 48. Sesha Sai VV, Chaudhuri BK, Ghosh RN (2004) Gold Mineralisation around Babaikundi Area in Singhbhum Group of Rocks, Ranchi District, Jharkhand. Geol Soc India 64(2):133-138
- 49. Singh S, Chakravarti R, Barla A, Behera RC, Neogi S (2021) A holistic approach on the gold metallogeny of the Singhbhum crustal province: Implications from tectono-metamorphic events during the Archean-Proterozoic regime. Precambrian Res 365:106376
- 50. Sun J, Li Y (2016) Joint inversion of multiple geophysical and petrophysical data using generalized fuzzy clustering algorithms. Geophys J Int 208(2):1201-1216
- 51. Sun J, Melo AT, Kim JD, Wei X (2020) Unveiling the 3D undercover structure of a Precambrian intrusive complex by integrating air- borne magnetic and gravity gradient data into 3D quasi-geology model building. Interpretation 8(4):SS15-SS29
- 52. Telford WM, Geldart LP, Sheriff RE (1990) Applied Geophysics. Cambridge University Press
- 53. Thorndike RL (1953) Who belongs in the family? Psychometrika 18:267-276
- 54. Ugalde H, Morris WA (2010) Cluster analysis of Euler deconvolution solutions: new filtering techniques and geologic strike determination. Geophysics 75(3):L61-L70
- 55. Wang Y, Ksienzyk AK, Liu M, Bronner M (2021) Multigeophysical data integration using cluster analysis: assisting geological mapping in Tr0ndelag, Mid-Norway. Geophys J Int 225:1142-1157
- 56. Ward WOC, Wilkinson PB, Chambers JE, Oxby LS, Bai L (2014) Distribution-based fuzzy clustering of electrical resistivity tomography images for interface detection. Geophys J Int 197:310-321
- 57. Wei X, Li K, Sun J (2023) Mapping critical mineral resources using airborne geophysics, 3D joint inversion and geology differentiation: a case study of a buried niobium deposit in the Elk Creek carbonatite, Nebraska, USA. Geophys Prospect 71:1247-1266
- 58. Wickham H (2014) Tidy Data. J Stat Softw 59:1-23
- 59. Zhao T, Jayaram V, Roy A, Marfurt KJ (2015) A comparison of classification techniques for seismic facies recognition. Interpretation 3(4):SAE29-SAE58
- 60. Zheng A, Casari A (2018) Feature engineering for machine learning: principles and techniques for data scientists. O’Reilly Media
Uwagi
Opracowanie rekordu ze środków MNiSW, umowa nr POPUL/SP/0154/2024/02 w ramach programu "Społeczna odpowiedzialność nauki II" - moduł: Popularyzacja nauki (2025).
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-492c9495-ba6a-4a71-97bd-4abdffef26cc
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.