PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

The analysis of energy potential in vine leaves of the ‘Regent’ cultivar as bio-waste depending on the year of cultivation and the type of rootstock used

Treść / Zawartość
Identyfikatory
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
The study evaluated physicochemical properties of bio-waste as a potential biofuel in the form of leaves from ‘Regent’ grapevines grown on six different rootstocks and a control grown on its own roots for three years of cultivation. An elemental analysis was carried out, determining the content of carbon, hydrogen, nitrogen, and sulphur in the leaves tested. A technical analysis of the biofuel was also carried out to determine the content of moisture, volatile matter, and ash. The calorimetric method was used to determine the higher heating value for the material. Fixed carbon and oxygen carbon was calculated based on the elemental and technical analyses. The study showed that the type of rootstock and the year of cultivation influence the amount of leaves obtained from the cultivation area. Leaf entrustment per hectare ranged from 1,140,868.02 in rootstock 161-49 to 1,265,286.7 Mg∙ha-1 in rootstock SO4. Regardless of the year of the study, shrubs grafted on 125AA rootstock and the control had the highest combustion heat of 17.5 MJ∙kg-1 and 17.6 MJ∙kg-1 respectively, while 5BB rootstock had the lowest combustion heat (16.4 MJ∙kg-1). Statistical analysis showed no significant effect of test year on the elemental and technical parameters evaluated. It was observed that regardless of the evaluated parameter and the type of rootstock in most parameters, the values in 2022 were the highest, while in 2021 they were the lowest.
Wydawca
Rocznik
Tom
Strony
171--177
Opis fizyczny
Bibliogr. 51 poz., rys., tab., wykr.
Twórcy
  • University of Life Sciences in Lublin, Institute of Horticulture Production, 28 Głęboka St, 20-612 Lublin, Poland
autor
  • University of Life Sciences in Lublin, Department of Power Engineering and Transportation, Lublin, Poland
  • University of Life Sciences in Lublin, Department of Applied Mathematics and Computer Science, Lublin, Poland
Bibliografia
  • Achaby, M.E. et al. (2018) “Production of cellulose nanocrystals from vine shoots and their use for the development of nanocomposite materials,” International Journal of Biological Macromolecules, 117, pp. 592–600. Available at: https://doi.org/10.1016/j.ijbiomac.2018.05.201.
  • Alves, J.L.F. et al. (2020) “Insights into the bioenergy potential of jackfruit wastes considering their physicochemical properties, bioenergy indicators, combustion behaviors, and emission characteristics,” Renewable Energy, 155, pp. 1328–1338. Available at: https://doi.org/10.1016/j.renene.2020.04.025.
  • Asomaning, J. et al. (2018) “Recent developments in microwave-assisted thermal conversion of biomass for fuels and chemicals,” Renewable and Sustainable Energy Reviews, 92, pp. 642–657. Available at: https://doi.org/10.1016/j.rser.2018.04.084.
  • Bajwa, D.S. et al. (2018) “A review of densified solid biomass for energy production,” Renewable and Sustainable Energy Reviews, 96, pp. 296–305. Available at: https://doi.org/10.1016/j.rser.2018.07.040.
  • Beccali, M., Columba, P. and D'Aleberti, V. (2009) “Assessment of bioenergy potential in Sicily: A GIS-based support methodology,” Biomass & Bioenergy, 33, pp. 79–87. Available at: https://doi.org/10.1016/j.biombioe.2008.04.019.
  • Bernetti, I., Fagarazzi, C. and Fratini, R. (2004) “A methodology to analyze the potential development of biomass energy sector: an application in Tuscany,” Forest Policy and Economics, 6, 415e432. Available at: https://doi.org/10.1016/j.forpol.2004.03.018.
  • Blasi di, C., Tanzi, V. and Lanzetta, M. (1997) “A study on the production of agricultural residues in Italy,” Biomass & Bioenergy, 12, pp. 321–331. Available at: https://doi.org/10.1016/S0961-9534(96)00073-6.
  • Brown, D.S. et al. (2013) “Susceptibility of four grapevine rootstocks to Cylindrocladiella parva,” New Zealand Plant Protection, 66, pp. 249–253.
  • Choudhury, N.D. et al. (2021) Characterization and evaluation of energy properties of pellets produced from Coir pith, Saw dust and Ipomoea carnea and their blends,” Energy Sources, Part A: Recovery, Utilization, and Environmental Effects, pp. 1–18. Available at: https://doi.org/10.1080/15567036.2020. 1871446.
  • Cookson, S.J. et al. (2012) “Grapevine rootstock effects on scion biomass are not associated with large modifications on primary shoot growth under non limiting conditions in the first year of growth,” Functional Plant Biology, 39, pp. 650–660. Available at: https://doi.org/10.1071/FP12071.
  • Directive (2008) “Directive 2008/98/EC of the European Parliament and of the Council of 19 November 2008 on waste and repealing certain directives (Text with EEA relevance),” Official Journal, L312/3.
  • Enes, T. et al. (2019) “Residual agroforestry biomass – thermochemical properties,” Forests, 10, 1072. Available at: https://doi.org/ 10.3390/f10121072.
  • Ferris, H., Zheng, L. and Walker, M.A. (2012) “Resistance of grape rootstocks to plant-parasitic nematodes,” Journal of Nematology, 44, pp. 377–386. Available at: https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3592374/ (Accessed: December 10, 2012).
  • Gonzalez-Garcìa, S. et al. (2014) “Comparative environmental and energy profiles of potential bioenergy production chains in Southern Europe, Journal of Cleaner Production, 76, pp. 42–54. Available at: https://doi.org/10.1016/j.jclepro.2014. 04.022.
  • Güleç, F. et al. (2022) “Predictability of higher heating value of biomass feedstocks via proximate and ultimate analyses – A comprehensive study of artificial neural network applications,” Fuel, 320, 123944. Available at: https://doi.org/10.1016/j.fuel. 2022.123944.
  • Guo, M., Song, W. and Buhain, J. (2015) “Bioenergy and biofuel: History, status and perspective,” Renewable and Sustainable Energy Reviews, 42, pp. 712–725. Available at: https://doi.org/10.1016/j.rser.2014.10.013.
  • ISO 1928:2009(en). Solid mineral fuels – Determination of gross calorific value by the bomb calorimetric method and calculation of net calorific value. Available at: https://www.iso.org/obp/ui/#iso:std:iso:1928:ed-3:v1:en (Accessed: December 30, 2019).
  • ISO 18134-3:2015. Solid biofuels – Determination of moisture content – Oven dry method – Part 3: Moisture in general analysis sample. Available at: https://cdn.standards.iteh.ai/samples/61637/348e0b3dd58a4670b916800acac2a626/ISO-18134-3-2015.pdf (Accessed: December 30, 2019).
  • Jones, G. et al. (2010) “Forest treatment residues for thermal energy compared with disposal by onsite burning: emissions and energy return,” Biomass & Bioenergy, 34, pp. 737–746. Available at: https://doi.org/10.1016/j.biombioe.2010.01.016.
  • Keller, M., Mills, L.J. and Harbertson, F. (2012) “Rootstock effects on deficit-irrigated winegrapes in a dry climate: vigor, yield formation, and fruit ripening,” American Journal of Enology and Viticulture, 63, pp. 29–39. Available at: https://doi.org/10.5344/ajev.2011.11078.
  • Keshtkar, H. and Ashbaugh, L. (2007) “Size distribution of polycyclic aromatic hydrocarbon particulate emission factors from agricultural burning,” Atmospheric Environment, 41, pp. 2729–2739. Available at: https://doi.org/10.1016/j.atmosenv. 2006.11.043.
  • Klimek, K. et al. (2022) “Management of biomass of selected grape leaves varieties in the process of methane fermentation,” Journal of Water and Land Development, 55, pp. 17–27. Available at: https://doi.org/10.24425/jwld.2022.142300.
  • Kodur, S. et al. (2011) “Uptake, transport, accumulation and translocation of potassium in grapevine rootstocks (Vitis),” Vitis, Journal of Grapevine Research, 50, pp. 145–149. Available at: https://doi.org/10.5073/vitis.2011.50.145-149.
  • Magagnotti, N. et al. (2009) “Protocollo tecnico di utilizzazione delle potature di vigneti e oliveti [Technical protocol for the utilization of pruning residues from vineyards and olive groves],” ARSIA Regione Toscana, Firenze, pp. 55–66.
  • Miele, A. and Rizzon, L.A. (2017) “Rootstock-scion interaction: 1. Effect on the yield components of cabernet sauvignon grapevine,” Revista Brasileira de Fruticultura, 39(1), e-820. Available at: https://doi.org/10.1590/0100-29452017820.
  • Miele, A. Rizzon, L.A. and Giovannini, E. (2009) “Efeito do porta-enxerto no teor de nutrientes em tecidos da videira ‘Cabernet Sauvignon’ [Effect of rootstock on nutrient content of ‘Cabernet Sauvignon’ grapevine tissues],” Revista Brasileira de Fruticultura, Jaboticabal, 31, pp. 1141–1149. Available at: https://doi.org/10.1590/S0100-29452009000400031.
  • Moreira, M.M. et al. (2018) “Potential of Portuguese vine-shoot waste as natural resources of bioactive compounds,” Science of The Total Environment, 634, pp. 831–842. Available at: https://doi.org/10.1016/j.scitotenv.2018.04.035.
  • Muench, S. and Guenther, E. (2013) “A systematic review of bioenergy life cycle assessments,” Applied Energy, 112, pp. 257–273. Available at: https://doi.org/10.1016/j.apenergy.2013.06.001.
  • Pachón, E.R., Mandade, P. and Gnansounou, E. (2020) “Conversion of vine shoots into bioethanol and chemical: Prospective LCA of biorefinery concept,” Bioresource Technology, 303, 122946. Available at: https://doi.org/10.1016/j.biortech. 2020.122946.
  • Picchi, G., Silvestri, S. and Cristoforetti, A. (2013) “Vineyard residues as a fuel for domestic boilers in Trento province (Italy): Comparison to wood chips and means of polluting emission control,” Fuel, 113, pp. 43–49. Available at: https://doi.org/10.1016/j.fuel.2013.05.058.
  • PN-EN ISO 16948:2015-07. Biopaliwa stałe – Oznaczanie całkowitej zawartości węgla, wodoru i azotu [Solid biofuels — Determination of total content of carbon, hydrogen and nitrogen]. Warszawa: Polski Komitet Normalizacyjny.
  • PN-EN ISO 16994:2016-10. Biopaliwa stałe – Oznaczanie całkowitej zawartości siarki i chloru [Solid biofuels — Determination of total content of sulfur and chlorine]. Warszawa: Polski Komitet Normalizacyjny.
  • Pouget, R. (1990) Histoire de la lutte contre le phylloxera de la vigne en France (1868–1895) [History of phylloxera control the vine in France (1868–1895)]. Paris: INRA.
  • Rahimi, Z., Anand, A. and Gautam, S. (2022) “An overview on thermochemical conversion and potential evaluation of biofuels derived from agricultural wastes,” Energy Nexus, 7, 100125. Available at: https://doi.org/10.1016/j.nexus.2022.100125.
  • Rosa, C. et al. (2011) “Symptomatology and effects of viruses associated with rugose wood complex on the growth of four different rootstocks,” American Journal of Enology and Viticulture, 62, pp. 207–213. Available at: https://doi.org/10.5344/ajev.2011.10104.
  • Sánchez-Gómez, R. et al. (2017) “Reuse of vine-shoots wastes for agricultural purposes,” in C.M. Galanakis (ed.) Handbook of grape processing by-products, 1st ed. London, UK: Elsevier, pp. 79–104.
  • Scarlat, N., Blukdea, V. and Dallemand, J.F. (2011) “Assessment of the availability of agricultural and forest residues for bioenergy production in Romania,” Biomass & Bioenergy, 3, pp. 1995–2005. Available at: https://doi.org/10.1016/j.biombioe.2011.01.057.
  • Somkuwar, R.G. et al. (2014) “Rootstocks influence the growth, biochemical contents and disease incidence in Thompson seedless grapevines,” Current Journal of Applied Science & Technology, 4(6), pp. 1030–1041. Available at: https://doi.org/10.9734/BJAST/2014/4450.
  • Souza de, C.R. et al. (2015) “Cabernet Sauvignon grapevine grafted onto rootstocks during the autumn-winter season in southeastern Brazilian,” Scientia Agricola, 72, pp. 138–146. Available at: http://dx.doi.org/10.1590/0103-9016-2014-0031.
  • Spinelli, R. et al. (2014) “An alternative to field burning of pruning residues in mountain vineyards,” Ecological Engineering, 70, pp. 212–216. Available at: https://doi.org/10.1016/j.ecoleng.2014.05.023.
  • Świerzewski, M. and Kalina, J. (2020) “Optimisation of biomass-fired cogeneration plants using ORC technology,” Renewable Energy, 159, pp. 195–214. Available at: https://doi.org/10.1016/j.renene.2020.05.155.
  • Terra, M.M. et al. (2003) “Produtividade da uva de mesa Niagara Rosada sobre diferentes porta-enxertos, em Monte Alegre do SulSP [Yield of the Niagara Rosada table grape cultivar grafted on different rootstocks, in Monte Alegre do Sul-SP],” Revista Brasileira de Fruticultura, Jaboticabal, 25(3), pp. 549–551. Available at: https://doi.org/10.1590/S0100-29452003000300049.
  • Torreiro, Y. et al. (2020) “The role of energy valuation of agroforestry biomass on the circular economy,” Energies, 13, 2516. Available at: https://doi.org/10.3390/en13102516.
  • UNE-EN ISO 18122:2016. Solid biofuels – Determination of ash content (ISO 18122:2015). Geneva: International Organization for Standardization.
  • UNE-EN ISO 18123:2016. Solid biofuels – Determination of the content of volatile matter (ISO 18123:2015). Geneva: International Organization for Standardization.
  • Vassilev, S.V. et al. (2017) “Ash contents and ash-forming elements of biomass and their significance for solid biofuel combustion,” Fuel, 208, pp. 377–409. Available at: https://doi.org/10.1016/j.fuel.2017.07.036.
  • Vecino, X. et al. (2017) “Vineyard pruning waste as an alternative carbon source to produce novel biosurfactants by Lactobacillus paracasei,” Journal of Industrial and Engineering Chemistry, 55, pp. 40–49. Available at: https://doi.org/10.1016/j.jiec.2017.06.014.
  • Velazquez-Marti, B. et al. (2001) “Quantification of the residua biomass obtained from pruning of trees on Mediterranean olive groves,” Biomass & Bioenergy, 35, pp. 3208–3217. Available at: https://doi.org/10.1016/j.biombioe.2011.04.042.
  • Virgona, J.M., Smith, J.P. and Holzapfel, B.P. (2003) “Scions influence apparent transpiration efficiency of Vitis vinifera (cv. Shiraz) rather than rootstocks,” Australian Journal of Grape and Wine Research, 9(3), pp. 183–185. Available at: https://doi.org/10.1111/j.1755-0238.2003.tb00268.x.
  • Walker, R.R. et al. (2007) “Rootstocks effects on salt tolerance of irrigated-grown grapevines (Vitis vinifera L. cv. Sultana). 3. Fresh fruit composition and dried grape quality,” Australian Journal of Grape and Wine Research, 13(3), pp. 130–141. Available at: https://doi.org/10.1111/j.1755-0238.2007.tb00243.x.
  • Wallis, C.M., Wallingford, A.K. and Chen, J.C. (2013) “Grapevine rootstock effects on scion sap phenolic levels, resistance to Xylella fastidiosa infection, and progression of Pierce’s disease,” Frontiers in Plant Science, 4, pp. 816–826. Available at: https://doi.org/10.3389/fpls.2013.00502.
Uwagi
Opracowanie rekordu ze środków MNiSW, umowa nr SONP/SP/546092/2022 w ramach programu "Społeczna odpowiedzialność nauki" - moduł: Popularyzacja nauki i promocja sportu (2024).
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-492c9336-d601-49f0-8d60-9547e045f62f
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.