PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Powiadomienia systemowe
  • Sesja wygasła!
  • Sesja wygasła!
Tytuł artykułu

Applying neural network techniques to determine traffic flow redirection proportions in road networks

Treść / Zawartość
Identyfikatory
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
This article explores traffic management strategies for addressing unpredictable events in transportation networks, focusing on situations where road segment capacity is reduced due to factors like traffic accidents or disruptions. The research aims to determine the proportion of traffic flow redistribution needed to maintain network efficiency under such conditions. A novel method is proposed to mitigate congestion by rerouting vehicles from heavily loaded roads, identified by high network load coefficients, to alternative routes. The approach also calculates the optimal volume of redirected traffic to avoid overloading other parts of the network, thereby minimizing the risk of secondary congestion. To achieve this, neural network-based survey and regression analysis techniques are utilized, offering precise and data-driven solutions for traffic redirection. The study highlights the potential of improving urban traffic flow through enhancements to indirect traffic control systems integrated into Intelligent Transportation Systems. By optimizing vehicle rerouting strategies, the proposed method seeks to increase ITS efficiency, especially in scenarios with high congestion risks or traffic accidents. This approach promises a more resilient and adaptive urban transportation network, ensuring smoother traffic operations and reduced congestion impacts.
Rocznik
Tom
Strony
267--275
Opis fizyczny
Bibliogr. 10 poz.
Twórcy
  • Faculty of Automobile Technology, Hanoi University of Industry (HaUI), 298 Cau Dien street, Hanoi, Vietnam
  • Faculty of traffic police, People’s s police university, 36 Nguyen Huu Tho street, 7th district, Hochiminh city, Vietnam
  • Faculty of Automobile Technology, Hanoi University of Industry (HaUI), 298 Cau Dien street, Hanoi, Vietnam
  • Faculty of Automobile Technology, Hanoi University of Industry (HaUI), 298 Cau Dien street, Hanoi, Vietnam
  • Faculty of Automobile Technology, Hanoi University of Industry (HaUI), 298 Cau Dien street, Hanoi, Vietnam
autor
  • Faculty of Information Technology, Telecommunications University, Nha Trang, Vietnam
Bibliografia
  • 1. Zhankaziev S.V. 2010. Concept of creating an intelligent transport system on federal highways. NIR. 83 p.
  • 2. Nguyen X.H. 2018. „Status of road traffic, ITS existing solutions and level of development of intelligent transport systems in Vietnam”. Avtomobil'. Doroga. Infrastruktura 2(16). 9 p.
  • 3. Vu T.V.A. 2024. „Prevention of traffic congestion with the help of subsystems of directive and indirect traffic flow management”. Bulletin of MADI 4(79): 82-88.
  • 4. Buslaev A.P. 2003. Probabilistic and simulation approaches to the optimization of road traffic. Russian Academy of Sciences V. M. Prikhodko. Moscow: Mir. 368 p.
  • 5. Gazvan A.H. 2006. „International models for assessing the level of road safety”. Science and technology in the road industry 3: 3-9.
  • 6. Efimenko D.B. 2012. „Methodological foundations of building navigation systems of dispatch control of transportation processes on road transport (e.g. urban passenger transport)”. Diss. doctor of technical sciences. 05.22.08. Мoscow. 479 p.
  • 7. Kosolapov A.V. 1992. „Increase of efficiency of information support of road traffic participants in the cities”. Diss. candidate of technical sciences. 05.22.10. Мoscow. 178 p.
  • 8. Kocherga V.G. 2001. „Estimation and forecasting of the road traffic parameters in the intellectual transportation systems”. Rostov n/D: Rost. State Construction University. 130 p.
  • 9. Utkin A.V. 2006. „Modeling of driver behavior and quality assessment of a mixed traffic flow”. "Organization and traffic safety in large cities"”. In: Collection of reports of the 7th International Conference. St.-Petersburg. P. 84-86.
  • 10. Xuan Can Vuong, Rui-Fang Mou, Trong Thuat Vu, Hoang Van Nguyen. 2021. „An adaptive method for an isolated intersection under mixed traffic conditions in Hanoi based on ANFIS using VISSIM-MATLAB”. IEEE Access 9: 166328-166338. DOI: 10.1109/ACCESS.2021.3135418
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-4925e45d-32bd-4ccb-9073-172c06901285
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.