Identyfikatory
Warianty tytułu
Języki publikacji
Abstrakty
This paper presents developments in the area of brain-inspired wireless communications relied upon in dense wireless networks. Classic approaches to network design are complemented, firstly, by the neuroplasticity feature enabling to add the learning ability to the network. Secondly, the microglia ability enabling to repair a network with damaged neurons is considered. When combined, these two functionalities guarantee a certain level of fault-tolerance and self-repair of the network. This work is inspired primarily by observations of extremely energy efficient functions of the brain, and of the role that microglia cells play in the active immune defense system. The concept is verified by computer simulations, where messages are transferred through a dense wireless network based on the assumption of minimized energy consumption. Simulation encompasses three different network topologies which show the impact that the location of microglia nodes and their quantity exerts on network performance. Based on the results achieved, some algorithm improvements and potential future work directions have been identified.
Słowa kluczowe
Rocznik
Tom
Strony
39--46
Opis fizyczny
Bibliogr. 8 poz., rys.
Twórcy
autor
- Faculty of Electronics and Telecommunications, Poznan University of Technology 5, M. Skłodowska-Curie Sq., 60-965 Poznań
autor
- Faculty of Electronics and Telecommunications, Poznan University of Technology 5, M. Skłodowska-Curie Sq., 60-965 Poznań
Bibliografia
- [1] M. Kamel, W. Hamounda, and A. Youssef, „Ultra-Dense Networks: A survey", IEEE Commun. Surveys & Tutor., vol. 18, no. 4, pp. 2522-2545, 2016 (doi: 10.1109/COMST.2016.2571730).
- [2] M. M. Mowla, I. Ahmad, D. Habibi, and V. Phung, „Energy efficient backhauling for 5G small cell networks", IEEE Trans. on Sustain. Comput., 2018 (doi: 10.1109/TSUSC.2018.2838116).
- [3] D. Goyal and M. R. Tripathy, „Routing protocols in wireless sensor networks: A survey", in Proc. 2nd Int. Conf. on Adv. Comput. & Commun. Technol., Rohtak, Haryana, India, 2012 (doi: 10.1109/ACCT.2012.98).
- [4] G. Gilli, L. Benso, and L. M. Schell (Eds.), Human Growth from Conception to Maturity. London: Smith-Gordon, 2002, pp. 36-49 (ISBN: 9781854632166).
- [5] D. Purves, G. Augustine, and D. Fitzpatrick, Neuroscience, 2nd ed. Sunderland (MA): Sinauer Associates, Neural Circuits, 2001 (ISBN: 978-0-87893-742-0).
- [6] S. Löwel and W. Singer, „Selection of intrinsic horizontal connections in the visual cortex by correlated neuronal activity", Science, vol. 255, no. 5041, pp. 209-212, 1992 (doi: 10.1126/science.1372754).
- [7] A. J. Barkovich, „Concepts of myelin and myelination in neuroradiology", Amer. J. of Neurorad. AJNR, vol. 21, no. 6, pp. 1099-1109, 2000.
- [8] A. London, M. Cohen, and M. Schwartz, „Microglia and monocytederived macrophages: functionally distinct populations that act in concert in CNS plasticity and repair", Front. in Cell. Neurosci., 2013, vol. 7, article 34 (doi: 10.3389/fncel.2013.00034).
Uwagi
Opracowanie rekordu w ramach umowy 509/P-DUN/2018 ze środków MNiSW przeznaczonych na działalność upowszechniającą naukę (2019).
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-491a4297-71a3-4927-a7c0-31ae3760fca8