Powiadomienia systemowe
- Sesja wygasła!
- Sesja wygasła!
Tytuł artykułu
Autorzy
Wybrane pełne teksty z tego czasopisma
Identyfikatory
Warianty tytułu
Języki publikacji
Abstrakty
We give a constructive proof of the fact that any Markov state (even non-homogeneous) on [wzór] is diagonalizable. However, due to the local en-tanglement effects, they are not necessarily of Ising type (Theorem 3.2). In addition,we prove that the underlying classical measure is Markov, and therefore, in the faithful case, it naturally defines a nearest neighbour Hamiltonian. In the translation invariant case, we prove that the spectrum of the two-point block of this Hamiltonian, in some cases, uniquely determines the type of the von Neumann factor generated by the Markov state (Theorem 5.3). In particular, we prove that, if all the quotients of the differences of two such eigenvalues are rational, then this factor is of type IIIλ for some λ ∈ (0,1), and that, if this factor is of type III1, then these quotients cannot be all rational. We conjecture that the converses of these statements are also true.
Czasopismo
Rocznik
Tom
Strony
401--418
Opis fizyczny
Bibliogr. 31 poz.
Twórcy
autor
- Dipartimento di Matematica, Università di Roma "Tor Vergata", Via della Ricerca Scientifica, 00133 Roma, Italy
autor
- Department of Mechanics and Mathematics, National University of Uzbekistan, Vuzgorodok, 700095, Tashkent, Uzbekistan
Bibliografia
- [1] L. Accardi, On noncommutative Markov property, Functional Anal. Appl. 8 (1975), pp. 1-8.
- [2] L. Accardi and C. Cecchini, Conditional expectations in von Neumann algebras and a theorem of Takesaki, J. Funct. Anal. 45 (1982), pp. 245-273.
- [3] L. Accardi and F. Fidaleo, Non-homogeneous quantum Markov states and quantum Markov fields, J. Funct. Anal. 200 (2003), pp. 324-347.
- [4] L. Accardi and F. Fidaleo, Quantum Markov fields, Infin. Dimens. Anal. Quantum Probab. Relat. Top. 6 (2003), pp. 123-138.
- [5] L. Accardi and F. Fidaleo, Entangled Markov chains, Ann. Mat. Pura Appl., in press.
- [6] L. Accardi and A. Frigerio, Markovian cocycles, Proc. Roy. Irish Acad. 83 (1983), pp. 251-263.
- [7] L. Accardi and V. Liebscher, Markovian KMS states for one-dimensional spin chains, Infin Dimens. Anal. Quantum Probab. Relat. Top. 2 (1999), pp. 645-661.
- [8] L. Accardi, Y. G. Lu and I. Volovich, Quantum Theory and Its Stochastic Limit, Springer, Berlin-Heidelberg-New York 2002.
- [9] H. Araki, On uniqueness of KMS states of one-dimensional quantum lattice systems, Comm. Math. Phys. 44 (1975), pp. 1-7.
- [10] O. Bratteli, P. E. T. Jorgensen, A. Kishimoto and R. F. Werner, Pure states on Od, J. Operator Theory 43 (2000), pp. 97-143.
- [11] O. Bratteli and D. W. Robinson, Operator Algebras and Quantum Statistical Mechanics, Vol. I, II, Springer, Berlin-Heidelberg-New York 1981.
- [12] A. Connes, Une classification des facteurs de type III, Ann. Sci. École Norm. Sup. 6 (1973), pp. 133-252.
- [13] R. L. Dobrushin, The description of a random field by means of conditional probabilities and conditions of its regularity, Theor. Probab. Appl. 13 (1968), pp. 197-224.
- [14] R. L. Dobrushin, Gibbsian random fields for lattice systems with pairwise interactions, Funct. Anal. Appl. 2 (1968), pp. 292-301.
- [15] R. L. Dobrushin, The problem of uniqueness of a Gibbsian random field and the problem of phase transitions, Funct. Anal. Appl. 2 (1968), pp. 302-312.
- [16] M. Fannes, B. Nachtergaele and R. F. Werner, Finitely correlated states of quantum spin chains, Comm. Math. Phys. 144 (1992), pp. 443-490.
- [17] N. N. Ganikhodjaev and F. M. Mukhamedov, Markov states on quantum lattice systems and its representations, Methods Funct. Anal. Top. 4 (1998), pp. 33-38.
- [18] Ya. V. Golodets and G. N. Zholtkevich, Markovian KMS states, Theor. Math. Phys. 56 (1983), pp. 686-690.
- [19] R. Haag, N. M. Hugenholtz and M. Winnink, On the equilibrium states in quantum statistical mechanics, Comm. Math. Phys. 5 (1967), pp. 215-236.
- [20] J. G. Kemeny, J. L. Snell and A. W. Knapp, Denumerable Markov Chains, Springer, Berlin-Heidelberg-New York 1976.
- [21] O. E. Lanford III and D. Ruelle, Observables at infinity and states with short range correlations in statistical mechanics, Comm. Math. Phys. 13 (1969), pp. 194-215.
- [22] F. M. Mukhamedov and U. A. Rozikov, Von Neumann algebra corresponding to one phase of inhomogeneous Potts model on a Cayley tree, Theor. Math. Phys. 126 (2001), pp. 169-174.
- [23] F. M. Mukhamedov and U. A. Rozikov, On Gibbs measures of models with competing ternary and binary interactions and corresponding von Neumann algebras, J. Statist. Phys. 114 (2004), pp. 825-848.
- [24] G. K. Pedersen, C*-algebras and Their Automorphism Groups, Academic Press, London 1979.
- [25] C. J. Preston, Gibbs States on Countable Sets, Cambridge University Press, London 1974.
- [26] D. Ruelle, Statistical Mechanics, Benjamin, Amsterdam-New York 1969.
- [27] A. G. Shukhov, Entropy of diagonal states on uon Neumann algebras, Funct. Anal. Appl. 14 (1980), pp. 163-165.
- [28] Ya. G. Sinai, Theory of Phase Transitions: Rigorous Results, Pergamon Press, Oxford 1982.
- [29] E. Størmer, Spectra of states, and asymptotically Abelian C*-algebras, Comm. Math. Phys. 28 (1972), pp. 279-294.
- [30] S. Strătilă, Modular Theory in Operator Algebras, Abacus Press, Tunbridge Wells, Kent 1981.
- [31] S. Strătilă and D. Yoiculescu, Representations of AF-algebras and of the Group U (∞), Springer, Berlin-Heidelberg-New York 1975.
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-49197773-6289-4453-af54-b794b4b04dc8