PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

An accurate model of LED luminaire using measurement results for estimation of electrical parameters based on the multivariable regression method

Treść / Zawartość
Identyfikatory
Języki publikacji
EN
Abstrakty
EN
Light sources and luminaires made in the LED technology are nowadays widely used in industry and at home. The use of these devices affects the operation of the power grid and energy efficiency. To estimate this impact, it is important to know the electrical parameters of light sources and luminaires, especially with the possibility of dimming. The article presents the results of measurements of electrical parameters as well as luminous flux of dimmable LED luminaires as a function of dimming and RMS supply voltage. On the basis of the performed measurements, a model of LED luminaire was developed for prediction of electrical parameters at set dimming values and RMS values of the supply voltage. The developed model of LED luminaire has 2 inputs and 26 outputs. This model is made based on 26 single models of electrical parameters, whose input signals are supply and control voltages. The linear regression method was used to develop the models. An example of the application of the developed model for the prediction of electrical parameters simulating the operation of an LED luminaire in an environment most similar to real working conditions is also presented.
Rocznik
Strony
251--269
Opis fizyczny
Bibliogr. 38 poz., rys., tab., wykr., wzory
Twórcy
autor
  • Institute of Electrical Power Engineering, Łódz University of Technology, 90-924 Lodz, Poland
  • Institute of Electrical Power Engineering, Łódz University of Technology, 90-924 Lodz, Poland
  • Institute of Electrical Power Engineering, Łódz University of Technology, 90-924 Lodz, Poland
Bibliografia
  • [1] Garcia, J., Saeed, S., Quintana, P., Cardesin, J., Georgious, R., Dalla Costa, M. A., & Camponogara, D. (2019). Optimization of a Series Converter for Low-Frequency Ripple Cancellation of an LED Driver. Electronics, 8(6), 664. https://doi.org/10.3390/electronics8060664
  • [2] Chaki, R., Ghosh, M., Kumar Panda, G., Kumar Saha, P., Dey, A., & Banerjee, A. (2020). An Improved Dimmable LED Driving Scheme with Low Flicker Metrics for Low Voltage Application. Electric Power Systems Research, 187. https://doi.org/10.1016/j.epsr.2020.106433
  • [3] Dae-Suk, K., Bongtae, H., & Youn-Jea, K. (2014). Degradation analysis of secondary lens system and its effect on performance of LED-based luminaire. Microelectronics Reliability, 54(1), 131-137. https://doi.org/10.1016/j.microrel.2013.08.007
  • [4] Hegedüs, J., Hantos, G., & Poppe, A. (2017). Light output stabilisation of LED based street lighting luminaires by adaptive current control. Microelectronics Reliability, 79, 448-456. https://doi.org/10.1016/j.microrel.2017.06.060
  • [5] Rachev, I., Djamiykov, T., Marinov, M., & Hinov, N. (2019). Improvement of the Approximation Accuracy of LED Radiation Patterns. Electronics, 8, 337. https://doi:10.3390/electronics8030337
  • [6] Kovács, A., Bátai, R., Csanád Csáji, B., Dudás, P., Háy, B., Pedone, G., Révész, T., & Váncza J. (2016). Intelligent control for energy-positive street lighting. Energy, 114, 40-51. https://doi.org/10.1016/j.energy.2016.07.156
  • [7] Hermoso-Orzâez, M. J., Rojas-Sola. J. I., & Gago-Calderón, A. (2018). Electrical consequences of large-scale replacement of metal halide by LED luminaires. Lighting Research & Technology, 50(2), 282-293. https://doi.org/10.1177%2F1477153516645647
  • [8] Al Irsyad, M. I., & Nepal, R. (2016). A survey based approach to estimating the benefits of energy efficiency improvements in street lighting systems in Indonesia. Renewable and Sustainable Energy Reviews, 58, 1569-1577. https://doi.org/10.1016/j.rser.2015.12.294
  • [9] Pizzuti. S., Annunziato, M., & Moretti, F. (2013). Smart street lighting management. Energy Efficiency, 6(3), 607-616. https://doi.org/10.1007/s12053-013-9195-9
  • [10] Nardelli, A., Deuschle, E., Dalpaz de Azevedo, L., Lorenço Novaes Pessoa, J., & Ghisi, E. (2017). Assessment of Light Emitting Diodes technology for general lighting: A critical review. Renewable and Sustainable Energy Reviews, 75, 368-379. https://doi.org/10.1016/j.rser.2016.11.002
  • [11] Pracki, P., Wiśniewski, A., Czyżewski, D., Krupiński, R., Skarżyński K., Wesołowski, M., & Czaplicki, A. (2020). Strategies influencing energy efficiency of lighting solutions. Bulletin of the Polish Academy of Sciences: Technical Sciences, 68(4), 711-719. https://doi.org/10.24425/bpasts.2020.134172
  • [12] Caicedo, D., Li, S., & Pandharipande, A. (2017). Smart lighting control with workspace and ceiling sensors. Lighting Research & Technology, 49(4), 446-460. https://doi.org/10.1177/1477153516629531
  • [13] Liu, H., Zhou, Q., Yang, J., Jiang,T., Liu, Z., & Li, J. (2017). Intelligent Luminance Control of Lighting Systems Based on Imaging Sensor Feedback. Sensors, 17(2), 321. https://doi.org/10.3390/s17020321
  • [14] Sikora. R. & Markiewicz, P. (2019). Analysis of Electric Power Quantities of Road LED Luminaires under Sinusoidal and Non-Sinusoidal Conditions. Energies, 12(6), 1109. https://doi.org/10.3390/en12061109
  • [15] European Committee for Standardization. (2015). Light and lighting. Road lighting - Part 5: Energy performance indicators (EN 13201-5:2015).
  • [16] European Commission (2012). Commission Delegated regulation No 874/2012 of 12 July 2012 supplementing Directive 2010/30/EU of the European Parliament and of the Council with regard to Energy labelling of electrical lamps and luminaires. http://data.europa.eu/eli/reg_del/2012/874/oj
  • [17] European Commission (2012). Commission regulation (EC) No 1194/2012 of 12 December 2012 implementing Directive 2009/125/EC of the European Parliament and of the Council with regard the ecodesign requirements for directional lamps, light emitting diode lamps and related equipment. http://data.europa.eu/eli/reg/2012/1194/oj
  • [18] The Act of 20 May 2016 on energy efficiency, http://prawo.sejm.gov.pl/isap.nsf/DocDetails.xsp?id=WDU20160000831 (in Polish)
  • [19] IEEE Power & Energy Society. (2010). Definitions for the Measurement of Electric Power Quantities Under Sinusoidal, Nonsunusoidal, Balanced, or Unbalanced Conditions (lEEE Std. 1459-2010). IEEE. https://doi.org/10.1109/IEEESTD.2010.5439063
  • [20] European Committee for Standardization. (2017). Energy performance of buildings (EN 15193:2017).
  • [21] Sikora, R., Markiewicz, P., & Pabjańczyk, W. (2018). Computing Active Power Losses Using a Mathematical Model of a Regulated Street Luminaire. Energies, 11(6), 386. https://doi.org/10.3390/en11061386
  • [22] Gil-de-Castro, A., Ronnberg, S., & Bollen, M. (2017). Light intensity variation (flicker) and harmonic emission related to LED lamps. Electric Power Systems Research, 146, 107-114. https://doi.org/10.1016/j.epsr.2017.01.026
  • [23] Raciti, A., Rizzo, S. A., & Susinni, G. (2020). Circuit model of LED light bulb suitable for typical voltage THD on LV distribution networks. Energy and Buildings, 212, 109665. https://doi.org/10.1016/j.enbuild.2019.109665
  • [24] Uddin, S., Shareef, H., & Mohamed, A. (2013). Power quality performance of energy-efficient low-wattage LED lamps. Measurement, 46(10), 3783-3795. https://doi.org/10.1016/j.measurement.2013.07.022
  • [25] Verma, P., Patel, N., & Nirmal-Kumar C. Nair (2017). Demand side management perspective on the interaction between a non-ideal grid and residential LED lamps. Sustainable Energy Technologies and Assessments, 23, 93-103. https://doi.org/10.1016/j.seta.2017.08.002
  • [26] McLorn, G., Laverty, D., Morrow D. J., & McLoone, S. (2019). Load and harmonic distortion characterization of modern low-energy lighting under applied voltage variation. Electric Power Systems Research, 169, 124-138. https://doi.org/10.1016/j.epsr.2018.12.029
  • [27] Yanchenko, S., Kulikov, A., & Tsyruk, S. (2018). Modeling harmonic amplification effects of modern household devices. Electric Power Systems Research, 163, Part A, 28-37. https://doi.org/10.1016/j.epsr.2018.05.021
  • [28] Ferreira de Souza. D., Fernandes da Silva, P. P., Almeida Fontenele, L. F., Damaceno Barbosa, G., & Marcelode Oliveira, J. (2019). Efficiency, quality, and environmental impacts: A comparative study of residential artificial lighting. Energy Reports, 5, 409-424. https://doi.org/10.1016/j.egyr.2019.03.009
  • [29] Sun, Y., Xie, X., Wang, Q., Zhang, L., Li, Y., & Jin, Z. (2020). A bottom-up approach to evaluate the harmonics and power of home appliances in residential areas. Applied Energy, 259, 114207.https://doi.org/10.1016/j.apenergy.2019.114207
  • [30] Herraiz, S., Sainz, L.,& Pedra, J. (2005). Unified and simple model for uncontrolled rectifiers. Electric Power System Research, 74(3), 331-340. https://doi.org/10.1016/j.epsr.2004.08.016
  • [31] Rabaza, O., Gómez-Lorente, D., Pérez-Ocón, P., & Peña-García, A. (2016). A simple and accurate model for designing of public lighling with energy efficiency functions based on regression analysis. Energy, 107, 831-842. https://doi.org/10.1016/j.energy.2016.04.078
  • [32] Raggiunto, S., Belli, A., Palma, L., Ceregioli, P., Gattari. M., & Pierleoni, P. (2019). An Efficient Method for LED Light Sources Characterization. Electronics, 8(10), 1089. https://doi.org/10.3390/electronics8101089
  • [33] European Committee for Standardization. (2007). Voltage Characteristics of Electricity Supplied by Public Distribution Systems (EN 50160:2007).
  • [34] Walczak, M. (2019). Methods of DC/DC converter transfer function measurements, based on data acquired in the time domain. Metrology and Measurement Systems, 20(4), 661-671. https://doi.org/10.24425/mms.2019.130569
  • [35] Grzechca, D., & Paszek, K. (2019). Short-term positioning accuracy based on mems sensors for smart city solutions. Metrology and Measurement Systems. 26(1), 95-107. https://doi.org/10.24425/mms.2019.126325
  • [36] European Committee for Standardization. (2012). Światło i oświetlenie. Pomiar i prezentacja danych fotometrycznych lamp i opraw oświetleniowych. Cześć 1: Pomiar i format pliku (PN-EN 13032-1+A1:2012).
  • [37] European Committee for Standardization. (2004). Light and lighting-Measurement and presentation of photometric data of lamp and luminaires - Part 1: Measurement and file format (EN 13032-1:2004).
  • [38] European Committee for Standardization. (2019). Światło i oświetlenie. Pomiar i prezentacja danych fotometrycznych lamp i opraw oświetleniowych Cześć 4: Lampy, moduły i oprawy oświetleniowe LED (PN-EN 13032-4+A1:2019).
Uwagi
Opracowanie rekordu ze środków MEiN, umowa nr SONP/SP/546092/2022 w ramach programu "Społeczna odpowiedzialność nauki" - moduł: Popularyzacja nauki i promocja sportu (2022-2023).
Identyfikator YADDA
bwmeta1.element.baztech-4918167a-7313-4941-910c-f59688611120