PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

Influence of Low-Temperature Plasma Treatment on The Liquid Filtration Efficiency of Melt-Blown PP Nonwovens in The Conditions of Simulated Use of Respiratory Protective Equipment

Treść / Zawartość
Identyfikatory
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
Filtering nonwovens produced with melt-blown technology are one of the most basic materials used in the construction of respiratory protective equipment (RPE) against harmful aerosols, including bio- and nanoaerosols. The improvement of their filtering properties can be achieved by the development of quasi-permanent electric charge on the fibres. Usually corona discharge method is utilized for this purpose. In the presented study, it was assumed that the low-temperature plasma treatment could be applied as an alternative method for the manufacturing of conventional electret nonwovens for the RPE construction. Low temperature plasma treatment of polypropylene nonwovens was carried out with various process gases (argon, nitrogen, oxygen or air) in a wide range of process parameters (gas flow velocity, time of treatment and power supplied to the reactor electrodes). After the modification, nonwovens were evaluated in terms of filtration efficiency of paraffin oil mist. The stability of the modification results was tested after 12 months of storage and after conditioning at elevated temperature and relative humidity conditions. Moreover, scanning electron microscopy and ATR-IR spectroscopy were used to assess changes in surface topography and chemical composition of the fibres. The modification of melt-blown nonwovens with nitrogen, oxygen and air plasma did not result in a satisfactory improvement of the filtration efficiency. In case of argon plasma treatment, up to 82% increase of filtration efficiency of paraffin oil mist was observed in relation to untreated samples. This effect was stable after 12 months of storage in normal conditions and after thermal conditioning in (70 ± 3)°C for 24 h. The use of low-temperature plasma treatment was proven to be a promising improvement direction of filtering properties of nonwovens used for the protection of respiratory tract against harmful aerosols.
Rocznik
Strony
195--207
Opis fizyczny
Bibliogr. 37 poz., tab., rys.
Twórcy
  • Central Institute for Labour Protection – National Research Institute (CIOP-PIB), Department of Personal Protective Equipment, Wierzbowa 48, 90-133 Łódź, Poland
autor
  • Central Institute for Labour Protection – National Research Institute (CIOP-PIB), Department of Personal Protective Equipment, Wierzbowa 48, 90-133 Łódź, Poland
autor
  • Central Institute for Labour Protection – National Research Institute (CIOP-PIB), Department of Personal Protective Equipment, Wierzbowa 48, 90-133 Łódź, Poland
  • Lodz University of Technology, Department of Material and Commodity Sciences and Textile Metrology, Żeromskiego 116, 90-924 Lodz, Poland
Bibliografia
  • 1. Angadjivand S.A., Jones M.E., Meyer D.E., 1996. Method of charging electret filter media. Patent no. WO 1995005501 A2.
  • 2. Barrett L.W., Rousseau A.D., 1998. Aerosol loading performance of electret filter media. Am. Ind. Hyg. Assoc. J., 59, 532–9. DOI: 10.1080/15428119891010703.
  • 3. Brochocka A., Mian I., Majchrzycka K., Sielski J., Tyczkowski J., 2014. Plasma modified polycarbonate nonwovens as filtering material for liquid aerosols. Fibres Text. East. Eur., 22, 76–80.
  • 4. Brochocka A., 2001. Characteristics of melt-blown filter materials produced by simultaneous blowing of polymer melt from two extruders. Fibres Text. East. Eur., 4, 66–9.
  • 5. Brown R., Wake D., 1999. Loading filters with monodisperse aerosols. J. Aerosol Sci., 30, 227–34. DOI: 10.1016/s0021-8502(98)00042-1.
  • 6. Brown R.C., Wake D., Gray R., Blackford D.B., Bostock G.J., 1988. Effect of industrial aerosols on the performance of electrically charged filter material. Ann. Occup. Hyg., 32, 271–94. DOI: 10.1093/annhyg/32.3.271.
  • 7. Brown R.C., 1993. Air filtration: An integrated approach to the theory and applications of fibrous filters. Pergamon Press, Oxford.
  • 8. Buyle G., 2009. Nanoscale finishing of textiles via plasma treatment. Mater. Technol., 24, 46–51. DOI: 10.1179/175355509x417954.
  • 9. Carter D.H., Howells R.D., Stern R.M., Temperante J.A., 1988. Fluorochemical oxazolidinones. Patent no. EP 0260011 A2.
  • 10. Chen C.C., Lehtimäki M., Willeke K., 1993. Loading and filtration characteristics of filtering facepieces. Am. Ind. Hyg. Assoc. J., 54, 51–60. DOI: 10.1080/15298669391354324.
  • 11. Contal P., Simao J., Thomas D., Frising T., Callé S., Appert-Collin J.C., Bémer D., 2004. Clogging of fibre filters by submicron droplets. Phenomena and influence of operating conditions. J. Aerosol. Sci., 35, 263–78. DOI: 10.1016/j.jaerosci.2003.07.003.
  • 12. Council Directive 89/686/EEC of 21 December 1989 on the approximation of the laws of the Member States relating to personal protective equipment.
  • 13. EN 13274-3:2001. Respiratory protective devices. Methods of test. Determination of breathing resistance. 2001.
  • 14. EN 13274-5:2001. Respiratory protective devices. Methods of test. Climatic conditions. 2001.
  • 15. EN 29073-1:1992. Methods of test for nonwovens. Methods of test for nonwovens. Determination of mass per unit area. 1992.
  • 16. Frising T., Thomas D., Bémer D., Contal P., 2005. Clogging of fibrous filters by liquid aerosol particles:
  • 17. Experimental and phenomenological modelling study. Chem. Eng. Sci., 60, 2751–2762. DOI: 10.1016/j.ces.2004.12.026.
  • 18. Gotoh K., Yasukawa A., 2010. Atmospheric pressure plasma modification of polyester fabric for improvement of textile-specific properties. Text. Res. J., 81, 368–78. DOI: 10.1177/0040517510387207.
  • 19. Gougeon R., Boulaud D., Renoux A., 1996. Comparison of data from model fibre filters with diffusion, interception and inertial deposition models. Chem. Eng. Commun., 151, 19–39. DOI: 10.1080/00986449608936539.
  • 20. Huang S.-H., Chen C.-W., Kuo Y.-M., Lai C.-Y., McKay R., Chen C.-C., 2013. Factors Affecting filter penetration and quality factor of particulate respirators. Aerosol Air Qual. Res., 13, 162–71. DOI: 10.4209/aaqr.2012.07.0179. ISO 9073-2:1995. Textiles. Test methods for nonwovens. Part 2: Determination of thickness. 1995.
  • 21. Jones M.E., Lyons C.S., Redmond D.B., Solomon J.L., Angadjivand S.A., 2002. Fluorinated electret. Patent no. US 2002/0152892 A1.
  • 22. Kanaoka C., Emi H., Otani Y., Iiyama T., 1987. Effect of charging state of particles on electret filtration. Aerosol Sci. Technol., 7, 1–13. DOI: 10.1080/02786828708959142.
  • 23. Li K., Jo Y.M., 2010. Dust collection by a fibre bundle electret filter in an MVAC system. Aerosol Sci. Technol., 44, 578–87. DOI: 10.1080/02786826.2010.481227.
  • 24. Majchrzycka K., 2013. Modification of polymeric filtration nonwovens by treatment with low-temperature plasma as a method for improvement of aerosol removal efficiency. Przem. Chem., 92, 1750–4.
  • 25. Martin S.B., Moyer E.S., 2000. Electrostatic respirator filter media: filter efficiency and most penetrating particle
  • 26. size effects. Appl. Occup. Environ. Hyg., 15, 609–17. DOI: 10.1080/10473220050075617.
  • 27. Matsuo T., 2008. Fibre materials for advanced technical textiles. Text. Prog., 40, 87–121. DOI: 10.1080/00405160802133028.
  • 28. Morent R., De Geyter N., Verschuren J., De Clerck K., Kiekens P., Leys C., 2008. Non-thermal plasma treatment of textiles. Surf. Coatings Technol., 202, 3427–49. DOI: 10.1016/j.surfcoat.2007.12.027.
  • 29. Nguyen L.Q., 2005. Method of making a melt-blown filter medium for use in air filters in internal combustion engines and product. Patent no. US 20040172930 A1.
  • 30. Pich J., Emi H., Kanaoka C., 1987. Coulombic deposition mechanism in electret filters. J. Aerosol Sci., 18, 29–35. DOI: 10.1016/0021-8502(87)90006-1.
  • 31. Raynor P.C., Leith D., 2000. The influence of accumulated liquid on fibrous filter performance. J. Aerosol Sci., 31, 19–34. DOI: 10.1016/s0021-8502(99)00029-4.
  • 32. Takemura Y., Yamaguchi N., Hara T., 2008. Study on surface modification of polymer films by using atmospheric plasma jet source. Jpn. J. Appl. Phys., 5644–7. DOI: 10.1143/jjap.47.5644.
  • 33. Urbaniak-Domagała W., Henryk W., Szymanowski H., Majchrzycka K., Brochocka A., 2010. Plasma modification of filter nonwovens used for the protection of respiratory tracts. Fibres Text. East. Eur., 18, 94–9.
  • 34. Verschuren J., Kiekens P., Leys C., 2007. Textile-specific properties that influence plasma treatment effect creation and effect characterization. Text. Res. J., 77, 727–33. DOI: 10.1177/0040517507078820.
  • 35. Walsh D.C., Stenhouse J.I.T., 1997. The effect of particle size, charge, and composition on the loading characteristics of an electrically active fibrous filter material. J. Aerosol Sci., 28, 307–21. DOI: 10.1016/s0021- 8502(96)00434-x.
  • 36. Yang S., Lee G.W.M., 2005. Filtration characteristics of a fibrous filter pretreated with anionic surfactants for monodisperse solid aerosols. J. Aerosol Sci., 36, 419–37. DOI: 10.1016/j.jaerosci.2004.10.002.
  • 37. Yang S., Lee W.-M.G., Huang H.-L., Huang Y.-C., Luo C.-H., Wu C.-C., Yu K.-P., 2007. Aerosol penetration properties of an electret filter with submicron aerosols with various operating factors. J. Environ. Sci. Health A. Tox. Hazard Subst. Environ. Eng., 42, 51–7. DOI: 10.1080/10934520601015651.
Uwagi
PL
Opracowanie ze środków MNiSW w ramach umowy 812/P-DUN/2016 na działalność upowszechniającą naukę (zadania 2017)
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-49132391-d900-4243-8352-9c456826b556
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.