PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

A Computational Algorithm for Path Interval Determination in Multi-Axis Filleted End Milling

Autorzy
Treść / Zawartość
Identyfikatory
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
The demands for filleted end milling with high efficiency are increasing more and more. Path interval determination is one of the computational processes in the tool path generation, and its development can offer further improvement in multi-axis filleted end milling. However, to our knowledge, the practical approach has been hardly proposed so far. Hence, this study proposes a novel algorithm to determine a suitable path interval in multi-axis filleted end milling with a tool inclination. The procedure with wide applicability and robustness was described based on the 3D geometrical consideration of filleted end mill. Then, the characteristics of procedure were discussed with the visual data obtained from the computational results.
Twórcy
  • Department of Systems Design Engineering, Faculty of Science and Technology, Seikei University, Tokyo, Japan
Bibliografia
  • 1. Neugebauer R., B. Denkena, K. Wegener, Mechatronic systems for machine tools. CIRP Annals - Manufacturing Technology, 56, 2007, 657-686.
  • 2. Mohanraja T., S. Shankarb, R. Rajasekarc, N.R. Sakthivela, A. Pramanikd, Tool condition monitoring techniques in milling process – a review. Journal of Materials Research and Technology, 2019, DOI: 10.1016/j.jmrt.2019.10.031.
  • 3. Altintas Y., Manufacturing Automation Metal Cutting: Mechanics, Machine Tool Vibrations and CNC Design, 2nd edition. Cambridge University Press, 2012.
  • 4. Altintas Y., C. Brecher, M. Weck, and S. Witt, Virtual machine tool” CIRP Annals – Manufacturing Technology, 54, 2005, 651-704.
  • 5. Takeuchi Y., CAM for Multi-Axis Control and Multi-Tasking Machining. Trans. JSME Series C, 77, 2011, 3544-3551 (in Japanese).
  • 6. Konobrytskyi D., M.M. Hossain, T.M. Tucker, J.A. Tarbutton, T.R. Kurfess, 5-Axis tool path planning based on highly parallel discrete volumetric geometry representation: Part I contact point generation. Computer-Aided Design and Applications, 15, 2018, 76-89. DOI: 10.1080/16864360.2017.1353730.
  • 7. Lasemi A., D. Xue, P. Gu, Recent development in CNC machining of freeform surfaces: a state-of-the-art review. Comput. Aided Des., 42, 2010, 641–654.
  • 8. Bo P., M. Bartoň, D. Plakhotnik, H. Pottmann, Towards efficient 5-axis flank CNC machining of free-form surfaces via fitting envelopes of surfaces of revolution. Comput. Aided Des. 79, 2016, 1–11.
  • 9. Harik R.F., H. Gong, A. Bernard, 5-axis flank milling: A state-of-the-art review. Comput. Aided Des., 45, 2013, 796-808. DOI: 10.1016/j. cad.2012.08.004.
  • 10. Sekine T., T. Obikawa, Normal-Unit-Vector-Based Tool Path Generation Using a Modified Local Interpolation for Ball-End Milling. Journal of Advanced Mechanical Design, Systems, and Manufacturing, 4, 2010, 1246-1260.
  • 11. Bedi S., F. Ismail, M.J. Mahjoob, Y. Chen, Toroidal Versus Ball Nose and Flat Bottom End Mills. International Journal of Advanced Manufacturing Technology, 13, 1997, 326-332.
  • 12. Layegh E., I. Lazoglu, 3D surface topography analysis in 5-axis ball-end milling. CIRP Annals, 66, 2017, 133–136.
  • 13. Quinsat Y., S. Lavernhe, C. Lartigue, Characterization of 3D Surface Topography in 5-Axis Milling. Wear, 271, 2011, 590-595.
  • 14. Lee S.G., H.C. Kim, M.Y. Yang, Mesh-based tool path generation for constant scallop-height machining. International Journal of Advanced Manufacturing Technology, 35, 2008, 15-22.
  • 15. Choi Y.K., A. Banerjee, J.W. Lee, Tool path generation for free form surfaces using Bézier curves/ surfaces. Computers & Industrial Engineering, 52, 2007, 486-501.
  • 16. Obikawa T., T. Sekine, A Higher-Order Formula of Path Interval for Tool-Path Generation. International Journal of Automation Technology, 5, 2011, 663-668.
  • 17. Huang Y., J.H. Oliver, Non-constant parameter NC tool path generation on sculptured surfaces. The International Journal of Advanced Manufacturing Technology, 9, 1994, 281-290.
  • 18. Choi B.K., J.W. Park, C.S. Jun, Cutter-location data optimization in 5-axis surface machining. Computer-Aided Design, 25, 1993, 377-386.
  • 19. Chen T., Z. Shi, A tool path generation strategy for three-axis ball-end milling of free-form surfaces. Journal of Materials Processing Technology, 208, 2008, 259-263.
  • 20. Mladenovic G.M., L. M. Tanovic, and K. F. Ehmann, Tool path generation for milling of free form surfaces with feedrate scheduling. FME Transactions, 43, 2015, 9-15.
  • 21. Sarma R., Flat-Ended Tool Swept Sections for Five-Axis NC Machining of Sculptured Surfaces. Trans. ASME, Journal of Manufacturing Science and Engineering, 122, 2000, 158-165.
  • 22. Vickers G.W., K.W. Quan, Ball-Mills Versus End-Mills for Curved Surface Machining. Trans. ASME, Journal of Engineering for Industry, 111, 1989, 22-26.
  • 23. Plakhotnik D., B. Lauwers, Computing of the actual shape of removed material for five-axis flat-end milling. Computer-Aided Design, 44, 2012, 1103-1114.
  • 24. Lauwers B., D. Plakhotnik, Five-axis milling tool path generation with dynamic step-over calculation based on integrated material removal simulation. CIRP Annals - Manufacturing Technology, 61, 2012, 139-142.
  • 25. Kim B.H., C.N. Chu, Effect of cutter mark on surface roughness and scallop height in sculptured surface machining. Computer-Aided Design, 26, 1994, 179-188.
  • 26. Sekine T., T. Obikawa, Novel path interval determination in 5-axis flat end milling. Applied Mathematical Modelling, 39, 2015, 3459-3480.
  • 27. Sekine T., T. Obikawa, M. Hoshino, Establishing a Novel Model for 5-Axis Milling with Filleted End Mill. Journal of Advanced Mechanical Design, Systems, and Manufacturing, 6, 2012, 296-309.
  • 28. Sekine T., A 3D geometrical consideration of path interval in filleted end milling. J. Jpn. Soc. Abras. Technol., 60, 515, 2016 (in Japanese).
Uwagi
Opracowanie rekordu ze środków MNiSW, umowa Nr 461252 w ramach programu "Społeczna odpowiedzialność nauki" - moduł: Popularyzacja nauki i promocja sportu (2020).
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-49111a6e-4da8-4445-9d62-5380e104541c
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.